
Special thanks go to Jonathan [a.k.a the Gnome] for his detailed design work, for his
continued web site work, and for his never ending drive to let the world know that
FutureBASIC is the best language that ever toggled a bit.

SHIBUMI PRESS
an imprint of

STAZ SOFTWARE, INC.
THIRD PRINTING • JULY 2003

1



FUTUREBASIC  SWITCHING

This book was written and composed in Nisus Writer using a variety of typefaces:

body text - Palatino
listings - Clean Condensed
titles - Helvetica Neue

Screen shots were made with Snapz® by Ambrosia Software and edited in Adobe
Photoshop®.

CONTENT © 2002 BY CHRIS STASNY, (P) & © 2002 BY SHIBUMI
PRESS, AN IMPRINT OF STAZ SOFTWARE, INC. PUBLISHED IN
THE UNITED STATES OF AMERICA. ALL RIGHTS RESERVED.

FUTUREBASIC IS A REGISTERED TRADEMARK OF STAZ
SOFTWARE, INC. ALL OTHER TRADEMARKS MENTIONED IN THIS
BOOK ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS.

2



FUTUREBASIC  SWITCHING

Pop Quiz 5

From the Preferences window, select the Vars tab and make sure that Store strings in
STR# resource is checked. You may also check the box labeled Optimize (combine)
quoted strings.

The first check box will take all of the quoted strings from your program (as would be
the case with PRINT "Hello") and put them into a STR# resource. The second item
would combine duplicated strings so that there would not be two occurrances of "Hello"
in the listing.

Pop Quiz 6

If you built a new LONG IF structure, you will only get half credit for your answer.
The structure already exists in the code fragment that was shown. It just needs to be
extended.

LONG IF reference = _premenuclick
  LONG IF WINDOW(-1)
    MENU _FileMenu ,_CloseItem, _enable
    MENU _FileMenu ,_NewItem  , _disable
  XELSE
    MENU _FileMenu ,_CloseItem, _disable
    MENU _FileMenu ,_NewItem  , _enable
  END IF
END IF

Pop Quiz 7

DIM r AS RECT
ROUTE _toPrinter
LONG IF WINDOW(_width) > WINDOW(_height)
  REM this is landscape
XELSE
  REM this is portrait
END IF

ROUTE _toScreen

MAKING THE SWITCH TO
FUTUREBASIC

preface

This book assumes that you have some prior knowledge of programming in some
type of BASIC or a similar language. Because your previous experience may not include
a Macintosh programming language, we will explore some of the rudimentary
elements of program structure. Both the code and narrative will be targeted at Carbon
applications which will run in System 9 and in Mac OS X.

No publication can cover all requirements for all programmers. This one seeks to
move programmers (whether you are a rusty hobbyist who worked in Applesoft or a
dedicated professional from another platform) into competent levels of programming
the Mac in FutureBASIC.

There are many resources available beyond these printed pages; the most important
is the web site at <www.futurebasic.com>. From there you will find links to several
items produced by a wide range of authors as well as links to other sites. The Reference
Manual will always remain the final word in FutureBASIC terminology and syntax
and should be used in conjunction with this publication.

Because there is an enormous amount of ground to cover, we will begin with the
basics: syntax, structure, windows, buttons, menus, edit fields, events. We will not
initially explore every facet of these items. Our goal is to point you in the right direction
and make you comfortable with the language and with Macintosh programming in
general. After a brief overview of each Manager, we will deal with the details of a full
blown application.

It is possible to read along in this manual without ever typing the source code examples
into an edit window, but this would really be a disservice. There is no substitute for
entering a listing, making mistakes, and forcing yourself to find out where things
went wrong. Experience is always the best teacher. (But a pot-bellied deputy with a
loaded six shooter is the best inspiration.)

Chris Stasny,
Chief Butterbean Picker,

STAZSOFTWARE

3



FUTUREBASIC  SWITCHING

POP QUIZ ANSWERS

Pop Quiz 1

LOCAL FN addOne(parameterIn)
END FN = parameterIn++

LOCAL FN addTwo(parameterIn)
END FN = parameterIn + 2

Pop Quiz 2

FB stores each string in a private stack. As a string parameter is passed,  it is pushed on
to the top of the stack. When it is received by your function, it is popped off of the stack.
In the case of toolbox routines that require a string, FutureBASIC is smart enough to
know that the operating system wants a pointer instead of the actual string. In this case,
no string is pushed onto the internal stack.

Pop Quiz 3

A short integer would have worked just fine in this example, but the register that was
used to hold the variable had enough room for a long integer. In order for FutureBASIC
to make the variable look like a word length variable, it would have had to perform
extra steps. So, in this case, the long integer was actually faster (and required no more
RAM ) than a short.

Pop Quiz 4

This program prints the size of a Boolean and holds the window in position until you
quit the application.

PRINT SIZEOF(BOOLEAN)

DO
HANDLEEVENTS

UNTIL 0

This same idea will work for any kind of variable or record.

FUTUREBASIC  SWITCHING

UNDERSTANDING MODERN TERMS

Before we get down to business, you need to learn a few pieces of Mac-speak. We will
do this by comparing older, more common terms with some of their more modern
counterparts.

Mac OS X vs Mac OS 9

Mac OS X is a complete rewrite of Apple's operating system. By its very nature, it
cannot run older programs. Apple, armed with their traditional pickle jar full of
cleverness, decided to make old programs run in a special partition called Classic.
When you are running Mac OS X and you wish to launch a Mac OS 9 application, a
separate process is used that runs part of your Mac as though it were an older version
of the System Software. In this way, Mac OS 9 can be run within Mac OS X and the
two can coexist with few problems.

When Mac OS 9 is run under Mac OS X, it is referred to as Classic. When Mac OS 9 is
used as the startup, it will be referred to as System 9 in this text. The differences between
the two are subtle, but to ensure that your program functions well in all environments,
it is best to test it both ways.

Standard BASIC vs Appearance Runtime

This book will deal only with the Appearance Runtime. FutureBASIC provides a series
of different Runtimes – Appearance, Standard, console… – to cover different
programming needs. If you are navigating your way from FBII, or from the Standard
BASIC runtime of FutureBASIC^3, you will be very much at home with the new
syntaxes. Very little has changed. But you still have some things to learn and making
too many assumptions about programming with the Appearance Runtime might
lead to difficulties down the road.

4

TERMS



FUTUREBASIC  SWITCHING

SAY "GOOD NIGHT," DICK.

Wow! We really covered a lot of ground! All of the new concepts that were outlined in
these pages will really help you get the most from FutureBASIC. Of course, this is no
substitute for the reference manual, but served (I hope) as an introduction to some of
the power that you will have at your fingertips when you use FutureBASIC.

There are lots of places that you can go from here. You might want to hit the keyboard
and start banging out your own great application. You might want to scan the Reference
manual, page by page to see what other great items are available. But the best source is
probably going to be the web site (www.stazsoftware.com) where you will always
find the latest and greatest additions and articles on FutureBASIC.

Good luck!

172

FUTUREBASIC  SWITCHING

Platinum vs Aqua

The grayscale interface widgets that appear in System 9 are automatically generated
and maintained by any program that properly handles the details of the Appearance
Runtime. The graphic style of these elements is referred to as Platinum. The term
Aqua refers to the appearance of the Graphic User Interface in Mac OS X. This is the
glassy buttons and horizontally striped backgrounds, as well as the newer brushed
metal widgets that Apple has introduced. A properly configured program will
automatically switch from Platinum to Aqua when run.

Carbon vs PPC

It seems that we just barely get used to one system and it's time to throw all of our
knowledge away and start over with a new one. Long time Mac programmers will
remember the old days of programming with the Motorola 680x0 architecture. We
thought it was the end of the world when Apple switched to the PPC microprocessor.

Switching from PPC to Carbon is, in many ways, like switching from 68K to PPC. It is
as though Apple has created a new microprocessor. In reality, they have inserted a
layer between the microprocessor and the toolbox called the Mach Kernel. Now, instead
of toolbox calls talking directly to the machine as they did in PPC, they speak to the
processor independent kernel which relays instructions to the processor.

This is important for many reasons. If different systems or platforms are used, the
kernel becomes the go-between and things work almost transparently. That is why
we want to speak to the kernel (in Carbon programming) rather than the
microprocessor (in PPC programming). By using Carbon, our applications will run in
both System 9 and Mac OS X with little or no change.

5

TERMS 



FUTUREBASIC  SWITCHING

/*
display the splash alert window and
react to the button clicks

*/
LOCAL FN showSplash

DIM clickedButton

DO
clickedButton = FN ALERT(_splashAlert,0)
SELECT clickedButton

CASE 1//open
FN openStorageBin

CASE 2//new
FN createNewStorageBin

CASE 3//the picture
BEEP

END SELECT
UNTIL clickedButton = 1 or clickedButton = 2

END FN

/*
head 'em up. move 'em out

*/
LOCAL FN initProgram

FN createMenus
FN showSplash

END FN

171

FUTUREBASIC  SWITCHING

Carbon vs Cocoa

This is really something that can't logically be compared, but it needs to be dealt with
because there are so many misconceptions about it. I constantly hear, "Will FutureBASIC
compile Cocoa applications?" The answer is a resounding and clear, "No!" No matter
what anyone tells you, no matter how it is presented, Cocoa is nothing more than an
application environment based on Objective C. In other words, it is composed primarily
of a set of class libraries along with the underlying code to make the libraries accessible.
If we made FutureBASIC look and act like Objective-C, the BASIC police would certainly
toss us in the brig.

Don't be intimidated by those who say you need to program in Cocoa. It shows that
they do not understand the term. I am reminded of a quote from MacTech® magazine
several years ago when an Apple engineer said, "You will not be able to program for
System 7 unless you use C++." Our customers went into a panic! Everyone thought
that it was possible for Apple to somehow lock up a computer so that it would only
work with a single language. This is certainly not true and the seven (at the time of this
printing) versions of FutureBASIC that have followed System 7 prove my point. Apple
pushes Cocoa and Interface Builder now just like it pushed MacApp for so many
years. Don't let it bother you.

FutureBASIC vs C

MetroWerks® has a good implementation of the C language, but it's difficult to learn
and the improvements in programming speed over FutureBASIC are minuscule. Keep
in mind that you can write a bad program in C just as easily as you can write a bad
program in FutureBASIC. The real test of an application is, "Did you finish the product?"
In FutureBASIC, you will find that your projects are more easily brought to fruition.
This is not usually the case with more difficult languages.

Editor  vs Compiler vs Runtime

It's easy to get confused when these three terms are tossed around, but each is important.
The role of each part needs to be understood so that you are aware of their functions,
possibilities, and interactions.. The editor is the part of FutureBASIC where you type in
the source code. It is responsible for bold-facing the key words, indenting structures,
saving files to disk, and so on. In effect, it's just a very fancy word processor that is
designed around a specific type of data.

6

TERMS



FUTUREBASIC  SWITCHING

NEXT

FN showError("You can't open any more windows.")
END FN = nextSlot

/*
get info from pref fields & buttons

*/
LOCAL FN capturePrefs

gPref.titleInfoFlags = 0//clear flags

LONG IF BUTTON(_prefIncludeDateBtn) =  ¬
_kControlCheckBoxCheckedValue

gPref.titleInfoFlags += _includeDateMask
END IF

LONG IF BUTTON(_prefIncludePageNumberBtn) =  ¬
_kControlCheckBoxCheckedValue

gPref.titleInfoFlags += _includePageNumber
END IF
gPref.reportTitle = EDIT$(_preftitleFld)

END FN

170

TERMS 

FUTUREBASIC  SWITCHING

The compiler is a separate program that takes code written in the editor and translates
it into machine language. Depending on the size of the program and the speed of
your Macintosh, this may take anywhere from a few seconds up to a couple of minutes.
When the compiler is finished, a completely self-contained program is ready to be
launched.

The runtime is a set of commands that are built into FutureBASIC. For instance, the
WINDOW statement is used to open, modify, select, hide, or close a window. When
your code uses the WINDOW statement, a routine in the runtime is called which
makes the appropriate toolbox calls. The runtime is nothing more than a set of files
located in the Headers folder (Path: FB Extensions/Compiler/Headers). When a new
window is built a routine called RUNTIME FBwindow is invoked. You can actually
view and modify the source code that makes a window work!

When these three elements are combined, the collection is referred to as an IDE
(Integrated Development Environment).

so where are the pieces?

The many sections, parts, and pieces of FutureBASIC, when fully assembled, become
an IDE — an Integrated Development Environment. The position of each section of
the IDE is important. If the Editor didn't know where to look, it could not launch the
Compiler. If the Compiler could not find the Headers, it could not create an application.

The Editor is located next to a folder called FB Extensions. This is a requirement. You
may rename the Editor, but you may not move or rename the FB Extensions folder.

Inside of FB Extensions, you will find all of the components required to operate the
IDE. The Help folder contains all of the electronic help files which may be accessed
from the Help menu in the Editor. The FB Temp folder is used by both the Compiler
and Editor for storage of temporary files. Plug Ins are items that may be added to
FutureBASIC by third parties and are displayed in the Editor's Window menu.

7



FUTUREBASIC  SWITCHING

The final item in our arsenal is a collection of utility functions. Every program has
these. They are often reused for several applications and are universal in their usefulness.
One item is a function that displays an error message. I've seen programs that divide
this up into hundreds of individual routines that each use their own display methods.
This makes for a messy presentation and a confusing interface. So you see, it's not just
good programming practice to centralize your routines, it makes for a better user
experience.

We also handle items like program initialization and deal with the
preferences here.

Utility FNs.incl

/*
a generic function that displays an error message

*/
LOCAL FN showError(msg AS STR255)

DIM x

CALL PARAMTEXT(msg,"","","")
x = FN NOTEALERT(_errorAlert,0)

END FN

/*
this function locates the next available (empty)
slot to be used as a window and file reference number.

*/
LOCAL FN getNextRef

DIM x,nextSlot
nextSlot = 0

FOR x = 1 TO _maxDBWinds
LONG IF gCurrentRecord(x) = 0

nextSlot    = x
gCurrentRecord(x) = _zTrue
EXIT FN

169

END IF

TERMS
FUTUREBASIC  SWITCHING

The most important folder is the Compiler folder which contains the Compiler along
with several folders full of header files. Header files are FutureBASIC source code files
that contain the information necessary to make different runtimes operate. For instance,
there is a source code file named Rntm Appearance.Incl that gathers other files together
to make the IDE work in a specific way. If you were to use the Console runtime (not
documented in this publication) you would be including a source code file named
Rntm Lite.Incl which would give your programming environment (and your finished
application) a completely different look.

Always leave these things in order. There may be instances when you become an
expert where you will want to override specific items in one of these folders or add to
them, but such things are beyond the scope of this book, and there are better ways of
doing this than by changing things haphazardly. See the Referent Manual for complete
information.

8



FUTUREBASIC  SWITCHING

CASE _cursOverBtn
CURSOR _kThemeCountingDownHandCursor,_themeCursorStatic

CASE _cursOverEF
CURSOR _kThemeIBeamCursor,_themeCursorStatic

CASE _cursOverPF
// we have no picture fields

CASE _cursOverNothing
CURSOR 0

CASE _preview
IF reference = _preMenuClick THEN FN fixMenus
LONG IF reference = _EFChanged

gUndoFld  = WINDOW(_EFNum)
gUndoText = EDIT$(gUndoFld)

END IF
CASE _userDialog

END SELECT

END FN

168

old new details

< > != different*

OR || logical OR

AND && logical AND

x = x + 1 x++ [unitary] increment variable

x = x - 1 x-- [unitary] decrement variable

x = x + 10 x+=10 add 10 to variable

x = x - 10 x-=10 subtract 10 from variable

&HAB12 0xAB12 hexadecimal number

REM // or /* to */ remark

*This is the 
only  case in 
FutureBASIC 

where ! is used 
to signal NOT .

SYMBOLS
FUTUREBASIC  SWITCHING

UNDERSTANDING MODERN

PROGRAMMING SYMBOLS

Many of the constructs that were used in older versions of BASIC will still work, but in
several cases, a more modern equivalent is available. The following list shows old
fashioned basic commands along with their modern counterparts.

In virtually every case, both the new and old methods will work. For instance, to add 1
to the variable b, you could use any of the following:

b = b + 1
INC (b)
b += 1  b++

Most of the new conventions are
common and recognizable to
C programmers. In using them, we
hope to make it easier for you to
read and learn from the many C
examples available on the web. It
will also make your code easier for C programmers to follow as we convince them that
they should have been using FutureBASIC all along.

If you noticed the b++ at the end, you can understand where C++ (the name of the
language) originated. It is the old C, plus one. Readers may skip the next couple of
paragraphs. But if I don’t get to tell this story, I’m going to wet my pants.

[ begin story

When I was trying to hire a programmer to work on FutureBASIC II a few years ago, I
had a parade of con artists pass through my office.  Each of them told me that they were
experienced C++ programmers and attempted to dazzle me with terms that they had
just finished memorizing.

9



FUTUREBASIC  SWITCHING

WINDOW CLOSE _prefWnd
CASE _prefCancelBtn

WINDOW CLOSE _prefWnd
END SELECT

CASE _efClick

CASE _wndClick
WINDOW reference

CASE _wndClose
SELECT reference

CASE <= _maxDBWinds
FN captureData

CASE _prefWnd
FN capturePrefs

END SELECT
WINDOW CLOSE reference

CASE _wndRefresh
CASE _EFReturn
CASE _EFTab
CASE _wndZoomIn
CASE _wndZoomOut
CASE _EFShifttab
CASE _EFClear
CASE _EFLeftArrow
CASE _EFRightArrow
CASE _EFUpArrow
CASE _EFDownArrow
CASE _evKey
CASE _evDiskInsert
CASE _wndActivate
CASE _MFEvent

167

SYMBOLS

]

FUTUREBASIC  SWITCHING

When it became obvious that he was probably more proficient in BS than C++, I asked
one applicant if I could see some of his work. He told me that it was all top secret
government work and that I didn’t have the proper clearance. (I’m not lying. He really
said that!)

The next guy came in prepared. He actually had several printed pages of code to
show me. As I scanned the pages, I could see that the application was a 6502 emulator.
(In the olden days, Apple used a 6502 microprocessor on the Apple ][.) So I told him
that it looked really good and asked him how he learned 6502 assembly code. He
asked me to tell him what “6502” meant. I fell back on an old adage: Your code is both
good and original. But the parts that are good are not original and the parts that are
original are not good.

By now, I was starting to have some fun. The next wizard was also “proficient in
C++.” So I posed a question: Assume that you have a counting variable. Let’s call that
variable “c”. How would you increment it by one?

As you have now surmised, the answer was “c++”. He thought for a minute and told
me he would need to get out his manual to give me an exact answer.

Lucky for me, a fellow by the name of David Blache walked in that day. He didn’t
know C; he worked in Pascal. And to his credit, he not only produced source code, but
a clean, working application. I couldn’t hire him fast enough.

end story

Most of the new conventions are common and recognizable to C programmers. In
using them, we hope to make it easier for you to read and learn from the many C
examples available on the web. It will also make your code easier for C programmers
to follow as we convince them that they should have been using FutureBASIC all
along.

10



FUTUREBASIC  SWITCHING

!!!Dialog!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

/*
all dialog events are channeled thru this
function

*/
LOCAL FN handleDialog

DIM action AS LONG
DIM reference AS LONg

action = DIALOG(0)
reference = DIALOG(action)

SELECT action

CASE _btnClick
SELECT reference

CASE _newBtn
FN newRecord

CASE _delBtn
FN delRecord

CASE _firstBtn
FN navigate(0)

CASE _prevBtn
FN navigate(-1)

CASE _nextBtn
FN navigate(1)

CASE _lastBtn
FN navigate(2)

CASE _prefIncludeDateBtn,_prefIncludePageNumberBtn
FN toggleCheckBox(reference)

CASE _prefOKBtn
FN capturePrefs

166

SETUP 

FUTUREBASIC  SWITCHING

SETTING UP FOR THIS BOOK

We will make some assumptions about the way your Command menu and preferences
are set up when you type in these examples. If you don't ensure that they are in line
with the following, your code will probably not run.

Command menu

You should check Carbon and Appearance Compliant.

Preference window/Compiler tab

Uncheck Toolboxes require "CALL"

Some other settings are recommended, but not required. As you progress through this
book, you will come to understand the importance of each.

Preferences/Vars pane

Checkmark the following:
"Use only DIMensioned variables"
"Do not allow re-DIMensioned variables"
"Use register based vars for speed"

Preferences/DBug pane

Uncheck the following:
"Show errors, but skip warnings"

The Editor Manual will guide you through other preference settings if you care to
investigate further.

11



FUTUREBASIC  SWITCHING

BUTTON _delBtn,_activeBtn
LONG IF gCurrentRecord(fileRef) > 0//previous and first

BUTTON _firstBtn,_activeBtn
BUTTON _prevBtn,_activeBtn

XELSE
BUTTON _firstBtn,_grayBtn
BUTTON _prevBtn,_grayBtn

END IF

LONG IF gCurrentRecord(fileRef) < count -1//next & last
BUTTON _nextBtn,_activeBtn
BUTTON _lastBtn,_activeBtn

XELSE
BUTTON _nextBtn,_grayBtn
BUTTON _lastBtn,_grayBtn

END IF
END IF

END IF
END FN

/*
toggle check mark in check box

*/
LOCAL FN toggleCheckBox(btnRef)

LONG IF BUTTON(btnRef) == _kControlCheckBoxUncheckedValue
APPEARANCE BUTTON btnRef,_activeBtn,¬

_kControlCheckBoxCheckedValue
XELSE

APPEARANCE BUTTON btnRef,_activeBtn,¬
_kControlCheckBoxUncheckedValue

END IF

END FN

165

CONDITIONALS
FUTUREBASIC  SWITCHING

UNDERSTANDING FUTUREBASIC CONDITIONALS

While all languages seem to have similar terms for conditional branches, the details of
their implementation vary widely between compiler writers and platforms. Without
specifically detailing the methods used in other versions of BASIC or in other Macintosh
programming languages, we should at least visit some of the conditional structures so
that you can compare them to your own pool of knowledge and so that you will
recognize any differences that appear in the examples of this book.

a single line conditional:

IF condition THEN do something ELSE do something else

IF x = 10 THEN PRINT "X is equal to ten" ELSE PRINT "Bad Value for X"

a multi-line conditional:

LONG IF condition
do something

XELSE
otherwise, do something else

END IF

LONG IF x = 10
PRINT "X is equal to ten"

X E L S E
"Bad Value for X"

END IF

12



FUTUREBASIC  SWITCHING

Dialog routines  are the program's reaction to use requests. They include things like
cursor movements and button clicks. When you run this program, you note that the
cursor changes as it passes over buttons and edit fields. These are simple dialog handlers.

Because our initial button IDs were set up in one huge ENUM statement, it is not
necessary to determine in advance what kind of window is in front. We know from
the button number what needs to be done.

Dialog.incl

!!!Prototypes!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
DEF FN capturePrefs

!!!Buttons!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

/*
enable & disable navigation buttons

*/
LOCAL FN fixButtons

DIM @fileRef AS LONG
DIM @recNum  AS LONG
DIM count    AS LONG

LONG IF FN getRefNums(fileRef,recNum) = _noErr
count = FN countRecords
BUTTON _newBtn,_activeBtn

LONG IF recNum = -1
BUTTON _delBtn  ,_grayBtn
BUTTON _firstBtn,_grayBtn
BUTTON _prevBtn ,_grayBtn
BUTTON _nextBtn ,_grayBtn
BUTTON _lastBtn ,_grayBtn

164

XELSE

CONDITIONALS 

FUTUREBASIC  SWITCHING

a conditional that executes as long as a condition is met:

WHILE c o n d i t i o n
do something

W E N D

WHILE x < 10
x + +

W E N D
PRINT "X is equal to ten"

a conditional that executes until a condition is met:

D O
this something will be done at least once

UNTIL c o n d i t i o n

D O
x + +

UNTIL x >= 10
PRINT "X is equal to or greater than ten"

a list of selections where only one item may be accepted:

SELECT v a r i a b l e
CASE check variable

do something if condition is met
CASE ELSE

do something else
END SELECT

13



FUTUREBASIC  SWITCHING

APPEARANCE BUTTON _prefIncludeDateBtn,_activebtn ,btnValue,0,¬
_kControlCheckBoxCheckedValue,"Include Date",¬
@r,_kControlCheckBoxProc

r.left = r.Right + _margin
r.Right = WINDOW(_width) -_margin

LONG IF gPref.titleInfoFlags AND _includePageNumber
btnValue =  _kControlCheckBoxCheckedValue

XELSE
btnValue = _kControlCheckBoxUncheckedValue

END IF

APPEARANCE BUTTON _prefIncludePageNumberBtn,¬
_activebtn ,btnValue,0,¬
_kControlCheckBoxCheckedValue,"Include Page #",¬
@r,_kControlCheckBoxProc

r.bottom = WINDOW(_height) - _margin
r.right  = WINDOW(_width ) -_margin
r.top    = r.bottom - 24
r.left   = r.right  - 24
FN buildButton(_prefOKBtn     ,"OK"    ,r ,_activeBtn)
FN buildButton(_prefCancelBtn ,"Cancel",r ,_activeBtn)

END FN

163

SELECT CASE
FUTUREBASIC  SWITCHING

It is important to understand that only one condition can be met in a FutureBASIC
SELECT CASE structure. Once that condition is met and the matching code is executed,
the program jumps over all other CASEs to the END SELECT statement.

SELECT x
CASE 1 : PRINT "One"
CASE 2 : PRINT "Two"
CASE 3 : PRINT "Three"
CASE 4 : PRINT "Four"
CASE 5 : PRINT "Five"
CASE 6 : PRINT "Six"
CASE 7 : PRINT "Seven"
CASE 8 : PRINT "Eight"
CASE 9 : PRINT "Nine"
CASE 10 : PRINT "Ten"
CASE ELSE : PRINT "X is not between 1 and 10"

END SELECT

You may alternatively omit the selection variable and FutureBASIC will scan the cases
until it finds a true statement or a CASE ELSE.

S E L E C T
CASE x = 1 : PRINT "One"
CASE x = 2 : PRINT "Two"
CASE x = 3 : PRINT "Three"
CASE x = 4 : PRINT "Four"
CASE x = 5 : PRINT "Five"
CASE x = 6 : PRINT "Six"
CASE x = 7 : PRINT "Seven"
CASE x = 8 : PRINT "Eight"
CASE x = 9 : PRINT "Nine"
CASE x = 10 : PRINT "Ten"
CASE ELSE : PRINT "X is not between 1 and 10"

END SELECT

14



FUTUREBASIC  SWITCHING

/*
this opens the preference window & builds
the fields and buttons

*/
LOCAL FN openPrefWindow

DIM r      AS RECT
DIM wClass AS WindowClass
DIM wAttributes AS WindowAttributes
DIM err    AS OSErr
DIM b      AS WORD
DIM btnValue    AS WORD

// the window
SETRECT(r,0,0,300,108)
wClass = _kDocumentWindowClass
wAttributes =  ¬

_kWindowCloseBoxAttribute_kWindowCollapseBoxAttribute
DEF NEWWINDOWPOSITIONMETHOD(_kWindowAlertPositionOnMainScreen)
APPEARANCE WINDOW _prefWnd,"Preferences",@r,wClass,wAttributes
DEF SETWINDOWBACKGROUND( ¬

_kThemeActiveDialogBackgroundBrush,_zTrue)

b = FN createFields("Report Title:" ,_preftitleFld ,92 ,8)
EDIT$(_preftitleFld) = gPref.reportTitle

SETRECT(r,8,b + _margin * 2,WINDOW(_width)\\2,¬
b + USR FONTHEIGHT+ _margin * 2)

LONG IF gPref.titleInfoFlags AND _includeDateMask
btnValue = _kControlCheckBoxCheckedValue

XELSE
btnValue = _kControlCheckBoxUncheckedValue

END IF

162

LOOPS 

FUTUREBASIC  SWITCHING

loops that count:

FOR x = starting value TO ending value STEP increment value
do something at least once

N E X T

FOR x = 1 TO 10
PRINT x

N E X T

15



FUTUREBASIC  SWITCHING

// the record number
err = FN USETHEMEFONT(_kThemeEmphasizedSystemFont,¬

_smSystemScript)
SETRECT(r,_margin,_margin,WINDOW(_width)-_margin,¬

_margin + USR FONTHEIGHT)
EDIT FIELD _recNumField,,@r,¬

_statNoFramed
bot = r.bottom

bot = FN createFields("Last Name:" ,_lastNameField ,_edge ,bot)
bot = FN createFields("First Name:",_firstNameField,_edge ,bot)
bot = FN createFields("Address:"   ,_address1Field ,_edge ,bot)
bot = FN createFields(""           ,_address2Field ,_edge ,bot)
bot = FN createFields("City:"      ,_cityField     ,_edge ,bot)
bot = FN createFields("State:"     ,_stateField    ,_edge ,bot)
bot = FN createFields("Zip:"       ,_zipfield      ,_edge ,bot)
bot = FN createFields("Phone:"     ,_phonefield    ,_edge ,bot)
EDIT FIELD _lastNameField

// navigation buttons
r.bottom = WINDOW(_height) - _margin
r.right  = WINDOW(_width ) -_margin
r.top    = r.bottom - 24
r.left   = r.right  - 24

FN buildButton(_lastBtn ,"->|",r,_grayBtn)
FN buildButton(_nextBtn ,"->",r,_grayBtn)
FN buildButton(_prevBtn ,"<-",r,_grayBtn)
FN buildButton(_firstBtn,"|<-" ,r,_grayBtn)
FN buildButton(_newBtn  ,"New"   ,r,_grayBtn)
FN buildButton(_delBtn  ,"Delete",r,_grayBtn)

FN displayRecord

END FN

161

LOCAL FUNCTIONS
FUTUREBASIC  SWITCHING

PROGRAM ORGANIZATION

Creating a program is a lot like rearing a child. You never know what it's going to
grow up like, but you can bet that it will grow. It may expand because you acquired
new programming skills and learned that you could do things you previously deemed
impossible. It may get bigger because you find that you omitted some important piece
of logic when you first created the application. Other people that use the program may
require new features. This happens with commercial products, shareware, familyware
(where you make the mistake of writing a program for your brother-in-law's insurance
brokerage company and spend a decade trying to please him without getting any pay
for your trouble), and bragware (where you naively say, "Oh I can write a program
like that in a jiffy.").

The point is, a program that is not well ordered at the outset will not magically become
systematized in the course of your work. You need to start things out right or you will
certainly regret it. Here are some organizational tidbits that deserve to be tattooed on
your forearm.

local functions

A local function is a lot like the old fashioned subroutine. Old-fashioned subroutines in
BASIC, and some other languages, were called with a GOSUB statement. This caused
program execution to jump to the indicated line or program block. A local function is
similar except that it creates its own temporary set of variables on the stack when it is
called. (The stack is a section of program memory that is allocated by the system to
handle the temporary allocation of information. You'll learn more about this on page
25) These variables go away when the function is exited. The advantage here is that
variables in one local function will not interfere with variables in another local function.
Take a look at the following two functions.

16



FUTUREBASIC  SWITCHING

BLOCKMOVE rPtr,@r,SIZEOF(RECT)

err = FN USETHEMEFONT(_kThemeSystemFont,_smSystemScript)
wd  = FN STRINGWIDTH(cTitle) + _margin * 3
r.left = r.right - wd

APPEARANCE BUTTON bRef,state,1,0,1,cTitle,@r,¬
kControlPushButtonProc_kControlUsesOwningWindowsFontVariant

rPtr.right = r.left - _margin
END FN

/*
here, we open a storage bin window & build
the fields and buttons

*/
LOCAL FN openSBWindow(wRef AS LONG, wTitle AS STR63)

DIM r      AS RECT
DIM wClass AS WindowClass
DIM wAttributes AS WindowAttributes
DIM err    AS OSErr
dim bot
_edge = 96

// the window
SETRECT(r,0,0,360,260)
wClass = _kDocumentWindowClass
wAttributes = ¬
_kWindowCloseBoxAttribute_kWindowCollapseBoxAttribute
DEF NEWWINDOWPOSITIONMETHOD(_kWindowCascadeOnMainScreen)
APPEARANCE WINDOW wRef,wTitle,@r,wClass,wAttributes
DEF SETWINDOWBACKGROUND(¬

_kThemeActiveDialogBackgroundBrush,_zTrue)

160

LOCAL VARS

FUTUREBASIC  SWITCHING

LOCAL FN addOne(parameterIn)
DIM resultOut
resultOut = parameterIn + 1

END FN = resultOut

LOCAL FN addTwo(parameterIn)
DIM resultOut
resultOut = parameterIn + 2

END FN = resultOut

Pop Quiz 1: Both of these functions could be rewritten to take only two lines each. Do
you know how? Check the Pop Quiz Answers in the back. (No peeking till you've tried
to work it out!)

Both of these functions use the same name for an incoming parameter and the same
name for a working variable. Yet the two functions do not interfere with one another as
the following fragment shows.

PRINT FN addOne(10) : REM will print 11
PRINT FN addTwo(33) : REM will print 35

In general a local function is a subroutine that can accept incoming variables, process
information, and return a single result. Variables internal to the local function do not
interfere with other variables used in the program. On entry into a local function, the
initial value of variables (other than incoming parameters) will be random. Had we not
established a value for resultOut, there is no telling what value it might have been. In
other words, don't expect uninitialized variables to start with a value of zero. Those are
the rules, now let's deal with the exceptions.

clearing local function variables

A special syntax may be used to reset all variables to zero as a function begins to execute.
There is a slight overhead involved in this, so a large function with a significant number
of variables might waste a few nanoseconds clearing variable space. Unless you are
executing a function billions of times, this will probably make no difference.

17



FUTUREBASIC  SWITCHING

/*
this routine builds a prompt field (static text) and
an editable field.

*/
LOCAL FN createFields(prompt$,efNum,dividingLine,prevBottom)

DIM r AS RECT
DIM err    AS OSErr
gEFfilterAddr = @fn storBinEFFilter

err = FN USETHEMEFONT(_kThemeEmphasizedSystemFont,¬
_smSystemScript)

SETRECT(r,_margin,prevBottom + _margin,¬
dividingLine - _margin \\2 ,¬
prevBottom + _margin + USR FONTHEIGHT)

EDIT FIELD efNum + 1000, prompt, @r,_statNoFramed,_rightJust

r.left = dividingLine + _margin\\2
r.right = WINDOW(_width) -_margin
err = FN USETHEMEFONT(_kThemeApplicationFont,_smSystemScript)
EDIT FIELD efNum,"",@r,_framedNoCR,_leftJust,gEFfilterAddr

END FN = r.bottom

/*
this routine builds the navigation buttons in the
storage bin editor window and moves the rectangle
to the left so that it is in position for the next
button

*/
LOCAL FN buildButton(bRef,cTitle AS STR255,@rPtr AS ^RECT,state)

DIM r AS RECT
DIM err AS OSErr
DIM wd AS WORD

159

GLOBAL VARS
FUTUREBASIC  SWITCHING

CLEAR LOCAL FN clearedVariableSpace
DIM a,b,c
PRINT a,b,c

END FN

LOCAL FN unclearedVariableSpace
DIM a,b,c
PRINT a,b,c

END FN

FN clearedVariableSpace
FN unclearedVariableSpace

Results for the second function will vary from computer to computer and run to run,
but this is what I saw when I tested the code:

 0 0 0
-1515870811 -1515870811 -1515870811

global variables

There are times when you want a variable to break the local function barrier and be
accessible to all parts of the program. We call these global variables. A global variable
can be set up anywhere in your program (except inside of a local function) and is
designated by being sandwiched between two statements.

BEGIN GLOBALS
DIM gBaudRate

END GLOBALS

Now you can set a value for gBaudRate (even from inside of most local function) and
that value will be good in other local functions. BEGIN/END GLOBALS statements
are generally located at the top of a file and global variables, by convention, begin with
a lower case "g". This is important because without the g designation, you will easily
become confused as to which variables are local and which are global. gWhiz!

18



FUTUREBASIC  SWITCHING

I gathered all of the window handlers into a single file. In a larger application, there
would be additional code to handle window refreshes, zooming, resizing, and other
items.

One new and interesting development in this include is the addition of an edit field
filter. When the storage bin entry fields are created, a pointer is added that sends the
keys to a filter before allowing them to enter the field. Many things can be done with
this type of filter. We could accept only numbers or we could automatically capitalize
the first letter of someone's name. The reference manual will provide additional details
on this and you will find additional examples on the FutureBASIC CD. Our simple
routine insures that a record exists before a key is allowed to pass through to the field.
If no record has been created, then an alert warns the user that she must press the new
button before typing.

Window.incl

/*
this function insures that you are not entering
text before 'new' is selected

*/
LOCAL FN storBinEFFilter

DIM ignore
LONG IF gCurrentRecord(WINDOW(_outputWnd)) == -1//oops! no record

created yet
CALL PARAMTEXT("Click 'New' to create a record",¬

"before attempting to type.","","")
ignore = FN NOTEALERT(1,0)
EDIT FIELD 0

XELSE
TEKEY$ = TEKEY$

END IF
END FN

158

ENCAPSULATION 

FUTUREBASIC  SWITCHING

functions without global variables

It is possible to build a function that cannot see or use global variables. These are called
LOCAL MODE functions. Your first question is probably, "Why in the heck would
you want to do that?" Sometimes, you'll want to create functions that are distributed to
others or perhaps you will want to keep a library of functions that you use in several
programs. Using the word MODE insures that no variable used in the function can
collide with a global variable in yours or someone else's program. The syntax is generally
written like this:

LOCAL MODE
LOCAL FN doAnything

REM independent code here
END FN

encapsulation is a good thing

Each of these tools is designed to encapsulate pieces of your code. If you have ever had
to change something that wasn't just right and found that you had to search out a
dozen locations in your program where you did exactly the same thing, you failed
Encapsulation 101. Go sit in the corner.

Here's a simple example that probably showed up in more than one printout: you
want to draw a line across the page. You could set up several places in your program
where you use the following code:

MOVETO(0,y)
LINETO(1000,y)

Everything is great until you realize that your line really doesn't look good when it goes
all the way to the margins and you want to back it 16 pixels from each edge. Now, your
code is becoming unmanageable because of a simple line drawing routine. A better
idea would be to make the routine into a local function. A change at a later date would
only mean changing one piece of code.

LOCAL FN drawAline(yCoord)
MOVETO(16,yCoord)
LINETO(WINDOW(_width)-16,yCoord)

END FN

Now we have a line drawing routine that can easily be modified. Even more important,
the encapsulation of this routine allows us to toy with it a bit. We might add another

19

parameter that sets the thickness of the line.



FUTUREBASIC  SWITCHING

FN printCell(row,2,t,_false)

// city, state, zip
t = gStorageBin.city + ", " + gStorageBin.state
t += " " + gStorageBin.zip
FN printCell(row,3,t,_false)

// phone
t = gStorageBin.phone
FN printCell(row,4,t,_false)

row ++
END IF

NEXT recNum

ROUTE _toScreen
CLOSE LPRINT

END IF

END FN

157

PROGRAM FLOW

will be covered  in 
greater detail when 
we create a complete 
applicaiton at the end 
of this book.

Projects

FUTUREBASIC  SWITCHING

LOCAL FN drawAline(yCoord, thickness)
PEN 1,thickness
MOVETO(16,yCoord)
LINETO(WINDOW(_width)-16,yCoord)
PEN 1,1 // set pen back to normal

END FN

functions make code more readable

Let's sketch out an example for doing a printout. Your main print function may, in
turn, call additional functions.

LOCAL FN printDoc
ROUTE _toPrinter
FN printHeading
FN printBody
FN printFooter
ROUTE _toScreen

END FN

The function designed to print the heading may center the name of the document on
the page, then call FN drawAline to underline it. Breaking a program into fragments
like this will help prevent spaghetti code and will ensure that a specific operation is
only programmed once – not copied and pasted all over the source code.

program flow

Source code is executed from the top down. If you are working with multiple files in a
project, the project list is accessed from the top down, then each file in the list is handled
from the top down. Because of the way that the compiler handles local functions, the
code inside of a local function will not be executed unless the function is explicitly
called by name. It is as though an invisible GOTO statement was used to protect each
local function by detouring execution around the routine.

With this in mind, it is safe to place local functions anywhere and not worry that they
will accidentally be executed as would be the case of a subroutine built around an
old-fashioned GOSUB. As a consequence of the compilation order of a FutureBASIC
program, a local function cannot usually be called until after it is defined.  This does not
work:

20



FUTUREBASIC  SWITCHING

ROUTE _toPrinter
err = FN USETHEMEFONT(_kThemeApplicationFont,_smSystemScript)
ht = USR FONTHEIGHT + 2
count --

FOR recNum = 0 TO count

LONG IF row + 1 * ht > WINDOW(_height)

LONG IF pageNumber
ROUTE _toScreen
CLEAR LPRINT
ROUTE _toPrinter

END IF

pageNumber ++
FN printHeading(pageNumber)
row = 3

END IF

RECORD #fileRef,recNum
READ #fileRef,gStorageBin

LONG IF gStorageBin.lastName <> "** Blank Record **"

//name
t = gStorageBin.firstName + " " + gStorageBin.lastName
FN printCell(row,1,t,_false)

// street address
t = gStorageBin.address1
LONG IF LEN(gStorageBin.address2)

t += ", " + gStorageBin.address2
END IF

156

EVENT LOOP

FUTUREBASIC  SWITCHING

FN doSomething

LOCAL FN doSomething
END FN

If you attempted to execute this program, an error message would tell you that functions
must be defined before using. There is a simple work around called prototyping. You
can tell the compiler that you will, at some future point in your program, define a function.

DEF FN doSomething

FN doSomething

LOCAL FN doSomething
END FN

When you prototype a function, be sure to include the same parameters in the prototype
that you will use in the function definition. For instance, if FN doSomething required an
integer and a string parameter, the prototype would need the same integer and string
parameters in its definition.

Armed with the ability to prototype, you can place your functions anywhere (even is
separate files) and they will remain accessible.

i promise to never have more than one event loop

In the prehistoric days of computerdom (circa 1980) we dealt with machines that only
understood one thing: keyboard input. A typical program would end up with a screen
like this:

1 EDIT
2 PRINT
3 QUIT
PRESS 1,2, OR 3

Your program would lock itself into a tight loop while it waited for the user to press a
key. This is called modality. Nowadays, that's another word for "really bad
programming." In Macdom, there are many ways that the user may communicate
with the computer: keyboard, disk insertion, network communication, mouse clicks,

21

sincere talks where



FUTUREBASIC  SWITCHING

LONG IF gPref.titleInfoFlags AND _includePageNumber
title += SPACE$(25) + "Page " + STR$(pageNumber)

END IF

DEF CBOX(r,title)

FN printCell(2,1,"Name"           ,_zTrue)
FN printCell(2,2,"Address"        ,_zTrue)
FN printCell(2,3,"City, State ZIP",_zTrue)
FN printCell(2,4,"Phone"          ,_zTrue)

err = FN USETHEMEFONT(_kThemeApplicationFont,_smSystemScript)

END FN = USR FONTHEIGHT * 2

/*
let 'er rip, 'tater chip

*/
LOCAL FN printReport

DIM t   AS STR255
DIM count    AS LONG
DIM @fileRef AS LONG
DIM @recNum  AS LONG
DIM row,pageNumber,pixelPos,ht,err

DEF LPRINT
IF PRCANCEL THEN EXIT FN

LONG IF FN getRefNums(fileRef,recNum) = _noErr
count = FN countRecords
FN saveCurrentRecord
pageNumber = 0
row        = 1000

155

EVENT LOOP

Step 3 Note:

That was the 
traditional method of 
giving time to other 
applications running 
at the same time and
it is still how Classic 
and System 9 
function most of the 
time.

FUTUREBASIC  SWITCHING

you both express your deepest feelings, and so on. If you lock the user into a specific
mode, you're generally doing a bad thing. How would you feel if a program only let
you use the mouse at certain specific preprogrammed moments, or if it refused to let
you insert a CD if you hadn't chosen that menu item first.

Given this sort of logic, it follows that a program's true purpose is to wait for directions
from the end user and to be prepared to execute those requests when called upon.
This is done in an event loop, but there is a tiny bit of preparation required beforehand.
Your code must set up event vectors. This is just a place where the event loop branches
when a certain action is taken by the user.

Event vectors are readied in the format of ON typeOfEvent FN functionName. As an
example, we might use the following event vector and loop in a program:

LOCAL FN doMenu
REM menu handling code here

END FN

ON MENU FN doMenu

DO
HANDLEEVENTS

UNTIL 0

So this thing took
three steps:

Even though you
will set up many handler functions and many vectors, you will only have one
HANDLEEVENTS loop. Here's what happens behind the scenes… The ON event
FN line tells FutureBASIC to store the address of a function and associate it with a
particular action. The HANDLEEVENTS line tells FutureBASIC that nothing is going
on, so it may as well check to see if the user has taken any action in the last few ticks. If
an action is discovered, it looks through its list of vectors to see if a stored vector
corresponds to this particular action. In other words, if this is a menu event, is there an
ON MENU vector set up? If so, it branches to that routine.

22

Step 1 Build a handler function

Step 2 Set up a vector that points to the handler

Step 3 Sit around in an event loop waiting for the 
handler to be called



FUTUREBASIC  SWITCHING

/*
print the cell. if doFrame is non-zero
put a line along the bottom and righthand
borders

*/
LOCAL FN printCell(row,col,cellText AS STR255,doFrame AS BOOLEAN)

DIM r AS RECT
FN calcCellRect(row,col,r)
DEF LBOX(r,cellText)
LONG IF doFrame

MOVETO (r.left     , r.top       )
LINETO (r.right - 1, r.top       )
MOVETO (r.left     , r.bottom - 1)
LINETO (r.right - 1, r.bottom - 1)

END IF
END FN

/*
it's just a heading

*/
LOCAL FN printHeading(pageNumber)

DIM r AS RECT
DIM err AS OSERR
DIM title AS STR255

err = FN USETHEMEFONT(_kThemeEmphasizedSystemFont,¬
_smSystemScript)

SETRECT(r,0,0,WINDOW(_width),USR FONTHEIGHT)
title = gPref.reportTitle

LONG IF gPref.titleInfoFlags AND _includeDateMask
title += SPACE$(25) + DATE$

END IF

154

EVENT VECTOR 

FUTUREBASIC  SWITCHING

The runtime is even smart enough to sort out the actions so that the correct vector is
selected. For instance, if you click the mouse in the menu bar, you don't receive a mouse
event, you get a menu event. A command key sequence is not seen as a key press, it is
passed as a menu event. These are the available vectors:

ON APPLEEVENT
ON BREAK
ON DIALOG
ON EDIT
ON ERROR
ON EVENT
ON FINDERINFO
ON LPRINT
ON MENU
ON MOUSE
ON OVERFLOWS
ON STOP
ON TIMER
ON DONNER
ON BLITZEN

Not all of these will be set up for every program, but ON DIALOG and ON MENU are
very common.

23



FUTUREBASIC  SWITCHING

When you break it down to the basics, print routines are very simple routines that
accomplish small tasks. It is the repetition of these tasks that collect to make an attractive
printout. There are many ways in which this set of routines could be refined and extended,
but I will leave that exercise for your dining and dancing pleasure.

Print.incl
/*

These routines assume that all cells are of equal width
calculated from the constant _colCount in the .glbl file.

All print routines assume that the printer is already
selected (ROUTE _toPrinter).

*/

/*
calc the rectangle for any cell

*/
LOCAL FN calcCellRect(row,col,@rPtr AS ^RECT)

DIM r AS RECT
DIM ht,wd
col --
row --
ht = USR FONTHEIGHT + 2
r.top = row * ht
r.bottom = r.top + ht
wd = WINDOW(_width)\\_colCount
r.left = col * wd
r.right = r.left + wd
BLOCKMOVE @r,rPtr,SIZEOF(RECT)

END FN

153

working with memory variables

1. Get the variable a from memory and put it into a register.

2. Get the variable b from memory and put it into a register.

3. Add a (now in a register) to b (also now in a register).

4. Put the result into memory where the variable c is stored.

FUTUREBASIC  SWITCHING

REGISTERS

what is a register?

In the past, you probably thought that variables occupied some mysterious space in
RAM that was handled by unknowable routines in the compiler. We have already
learned that such is not the case by examining local variables which occupy space on
the ever-changing stack. There are other exceptions to this rule.

The PPC microprocessor has several on-board storage locations that are referred to as
registers. The older 680x0 machines also had registers, but there were not very many

and the concept was therefore not
as helpful. Now if you think about
the way a microprocessor works,
you will see the advantages of
registers. When working from
memory, an operation might
proceed something like you see in
the chart to the left.

It took the microprocessor four steps to complete this simple task. Now lets assume
that registers were used to store the variables a, b, and c. The new operation is much
more efficient.

Add a to b and put the result in c.

There are a finite number of registers available for your use, (usually 8) but putting
them to work for you is obviously a priority. That's why the compiler looks at your
variables and automatically places them  into registers until there are no spare registers
to be had. This is usually a good thing. But…

Sometimes we use variables that are passed as addresses. Here's an example:

DIM w AS WindowRef <-----This will not work
GET WINDOW _FBwndNum, w

24

REGISTERS



FUTUREBASIC  SWITCHING

CASE _mEdit
SELECT whichItem

CASE _iUndo
EDIT$(WINDOW(_efNum)) = gUndoText

CASE _iPreferences
FN openPrefWindow

CASE _iSelectAll
SETSELECT 0,_maxInt

END SELECT
END SELECT
MENU//unhilite menu bar

END FN

/*
build all of the menus

*/
LOCAL FN createMenus

APPLE MENU "About Storage Bin"

MENU _mfile,0          ,_enable,"File"
MENU _mfile,_iNew      ,_enable,"New/N"
MENU _mfile,_iOpen     ,_enable,"Open/O"
MENU _mfile,_iClose    ,_enable,"Close/W"
MENU _mfile,_iPageSetup,_enable,"Page Setup… "
MENU _mfile,_iPrint    ,_enable,"Print/P"
MENU _mfile,_iQuit     ,_enable,"Quit/Q"

gFBEditSelectAll = _zTrue
EDIT MENU _mEdit
MENU _mEdit,_iPreferences,_enable,"Preferences"
MENU PREFERENCES _mEdit,_iPreferences

END FN

152

FUTUREBASIC  SWITCHING

The variable w will receive information — the window pointer or window reference
depending on which version of the operating system is in use. FutureBASIC is smart
enough to know that it does not pass the value of the variable w, but must pass the
address of the variable so that a runtime routine can fill it in.

you cannot pass the address of a register

A register has no address. It is an on-board location that the microprocessor uses.
Therefore a register variable cannot be used where a parameter is designated to receive
a value. You must add an @ symbol to the dimension statement to tell the compiler
that the variable should not be placed in a register.

DIM @ w AS WindowRef
GET WINDOW _FBwndNum, w

Each time a new local function is entered, a new set of registers is made available. There
is a small amount of overhead involved in saving and restoring registers to make this
possible, but the advantages are enormous. Each local function has the ability to operate
at blazing speeds through the use of register variables.

make that a double, barkeep

All registers hold long integer values. When a variable is placed in a register there is no
advantage to making it an integer or a byte length variable. Indeed, there is a slight
disadvantage as FutureBASIC continuously adjusts the register to mimic shorter
variables. As we investigate floating point registers in just a moment, you will find that
those registers are created for double precision floats. Using a single precision float will
actually slow things down!

25

REGISTERS 



FUTUREBASIC  SWITCHING

/*
handle a menu selection

*/
LOCAL FN handleMenu

DIM whichMenu,whichItem
DIM x AS LONG
whichMenu = MENU(_menuID)
whichItem = MENU(_itemID)

SELECT whichMenu

CASE _appleMenu
FN showSplash

CASE _mFile
SELECT whichItem

CASE _iNew
FN createNewStorageBin

CASE _iOpen
FN openStorageBin

CASE _iClose
CASE _iPageSetup

DEF PAGE
CASE _iPrint

FN printReport
CASE _iQuit

gFBQuit = _zTrue
END SELECT

151

REGISTERS
FUTUREBASIC  SWITCHING

floating point registers

In addition to the many registers that hold long integer values, there are a series of
registers designed specifically for floating point values. These are not used automatically
by the compiler, but are discretely set up by where a dimension statement appears.
This scheme only works for local functions. The trick is to dimension the float before
the local function definition begins.

LOCAL
DIM  a AS DOUBLE
DIM b AS DOUBLE
LOCAL FN testingFloats

DIM c AS DOUBLE
END FN

In this example, the variables a and b are dimensioned before the LOCAL FN line and
are placed in floating point registers until there are no registers available. The variable c
is placed in memory because it comes after the local function definition begins.

26



FUTUREBASIC  SWITCHING

efNum = WINDOW(_efNum)
// find out if there is text on the clipboard
LONG IF (WINDOW(_textClip)) != 0 AND (efNum != 0)

MENU _mEdit,_iPaste,_enable
XELSE

MENU _mEdit,_iPaste,_disable
END IF

// is there a selection range of text?
LONG IF (WINDOW(_selStart) < WINDOW(_selEnd)) AND (efNum != 0)

MENU _mEdit,_iCut  ,_enable
MENU _mEdit,_iCopy ,_enable
MENU _mEdit,_iClear,_enable

XELSE
MENU _mEdit,_iCut  ,_disable
MENU _mEdit,_iCopy ,_disable
MENU _mEdit,_iClear,_disable

END IF

// if any field is active, allow 'Select All'
LONG IF efNum

MENU _mEdit,_iSelectAll,_enable
XELSE

MENU _mEdit,_iSelectAll,_disable
END IF

LONG IF (LEN(gUndoText) > 0) AND (efNum == gUndoFld) AND (efNum > 0)
MENU _mEdit,_iUndo ,_enable, "Undo"

XELSE
MENU _mEdit,_iUndo ,_disable, "Can't Undo"

END IF

END FN

150

RECORDS 

FUTUREBASIC  SWITCHING

RECORDS

A record is a template. When we define a record, we are saying that any variable set up
to match this template will organize itself in a certain way. There are hundreds of record
templates built into FutureBASIC. Let's start by examining one that is very common —
the rectangle. If you searched the header files, you would find this record definition:

BEGIN RECORD RECT
DIM top    AS SHORT
DIM left   AS SHORT
DIM bottom AS SHORT
DIM right  AS SHORT

END RECORD

These DIM statements set up offsets and do not cause variables space to be allocated in
memory. It is only a template designed to format any variable defined as a Rect. To
actually create the rectangle, we need to add another statement:

DIM r AS RECT

We refer to the specific elements of the record with the dimensioned record name,
followed by a dot, followed by the record's sub element. For instance, to set the left side
of the rectangle r to a value of 10, we would use the following:

r.left = 10

You are not limited to using records defined by the header files. You can create your
own. Records may even contain other records. For instance, a record may contain an
element dimensioned as a Rect, which we have just seen to be a record also.

27



FUTUREBASIC  SWITCHING

The menu Include handles much of what you would expect and a few things that
might surprise you. We create the menus here and react to a menu selection. But one of
the cool and unusual things about FutureBASIC is that we have a chance to enable and
disable menus before they are clicked into existence. In this manner, we can disable
inappropriate menu items based on the current status of windows, edit fields, and which
political party is currently in power.

Menus.incl

!!!Prototypes!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
DEF FN printReport
DEF FN openPrefWindow
DEF FN showSplash

!!!Here's the beef.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

/*
prepare the menus for use [activate & deactivate]

*/
LOCAL FN fixMenus

DIM w AS LONG
DIM efNum AS LONG

w = WINDOW(_activeWnd)
LONG IF w//file menu, close

MENU _mFile,_iClose,_enable
XELSE

MENU _mFile,_iClose,_disable
END IF

LONG IF W > 0 AND w <= _maxDBWinds//file menu, print
MENU _mFile,_iPrint,_enable

XELSE
MENU _mFile,_iPrint,_disable

END IF

149

RECORDS 
FUTUREBASIC  SWITCHING

A common record type is one that used to store personal information for employees,
customers, vendors, or folks you want to do mean things to.

BEGIN RECORD myData
DIM customerName AS STR255
DIM customerAddress AS STR255
DIM customerBalance AS DOUBLE

END RECORD

DIM customerRecord AS myData

It may be convenient to set up a single record for storage, but you are more likely to
have several customers. You could dimension an array of records like this:

DIM customerRecord(1000) AS myData

Records can even contain arrays. They can even contain arrays of records! This same
record might be extended to hold 100 customer transactions. Note the use of brackets
instead of parentheses when an array is internal to a record.

BEGIN RECORD myData
DIM customerName AS STR255
DIM customerAddress AS STR255
DIM customerBalance AS DOUBLE
DIM customerTransactions[100] AS DOUBLE

END RECORD

DIM customerRecord(1000) AS myData

28



FUTUREBASIC  SWITCHING

/*
Opens an existing data file and displays
the first record in a window.

*/

LOCAL FN openStorageBin

DIM fs     AS FSSpec
DIM fileName    AS STR63
DIM nextRef

fileName = FILES$(_FSSpecOpen,"sBIN", ¬
"Select a storage bin to open:", fs)

LONG IF LEN(fileName)
nextRef     = FN getNextRef
gPref.nextFileNumber ++
OPEN "R",#nextRef,@fs,SIZEOF(storageBinRecord)
gCurrentRecord(nextRef)  = 0
FN openSBWindow(nextRef,fileName)
EDIT FIELD _lastNameField

END IF
END FN

148

RECORDS 

FUTUREBASIC  SWITCHING

You could extract the balance from the account of customer number 55 as follows:

DIM cBal AS Double
cBal = customerRecord.customerBalance(55)

You could get the amount of this customer's thirty-third transaction with…

DIM cTransaction AS Double
cTransaction = customerRecord.customerTransactions[33](55)

Records can become quite complex. It is important that you use descriptive names. The
old single character variable names like x and i no longer fit the bill. (Though they still
remain serviceable in things like short FOR/NEXT loops.)

29



FUTUREBASIC  SWITCHING

!!!File Related!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

/*
Creates a whole new data file and opens
a window

*/
LOCAL FN createNewStorageBin

DIM fileName    AS STR63
DIM prompt AS STR63
DIM defaultName AS STR63
DIM fs     AS FSSpec
DIM nextRef

prompt      = "Create a new StorageBin Named…"
defaultName = "Untitled Storage Bin"+str$(gPref.nextFileNumber)
fileName    = FILES$(_FSSpecSave,prompt,defaultName, fs)

LONG IF LEN(fileName)
nextRef     = FN getNextRef
gPref.nextFileNumber ++
DEF OPEN = "sBINSBap"

// this si a trick to erase the old file
OPEN "O",#nextRef,@fs
CLOSE #nextRef

// now reopen it as random access
OPEN "R",#nextRef,@fs,SIZEOF(storageBinRecord)
gCurrentRecord(nextRef)  = -1

FN openSBWindow(nextRef,fileName)
EDIT FIELD 0//no fld active ~ no records yet

END IF
END FN

147

WINDOWS
FUTUREBASIC  SWITCHING

MACINTOSH WINDOWS

Now that the preliminaries are out of the way, we can get started with some simple
applications. We will begin by exploring windows and before we can even get down
to a serious discussion, we will have to revisit rectangles.

rectangles

A rectangle is an 8 byte structure that is used to store 4 integers to represent the top, left,
bottom, and right sides of a rectangle – in that order. A rectangle is created through a
special DIM statement:

DIM r AS RECT

In this example, r is the variable that holds all eight bytes. FutureBASIC is smart enough
to know that it is dealing with a larger than average structure, so when you pass r as a
parameter, it really only passes a pointer to r.

Here's a bit of trivia: There is never a case where a parameter larger than 4 bytes is
passed to a function. Put your tightest thinking cap on, because we are ready for (drum
roll…)

Pop Quiz 2: How do you think FutureBASIC allows 256 byte Pascal strings to be
passed as parameters?

With the rectangle dimensioned, we can now fill it in.

DIM r AS RECT
r.top    = 0
r.left   = 0
r.bottom = 300
r.right  = 300

30



FUTUREBASIC  SWITCHING

/*
move thru the file in response to
clicks in a navigation button

*/

LOCAL FN navigate(targetRecNum)

DIM @fileRef AS LONG
DIM @recNum  AS LONG

FN saveCurrentRecord
LONG IF FN getRefNums(fileRef,recNum) = _noErr

LONG IF recNum = -1
gCurrentRecord(fileRef) = recNum

XELSE
SELECT targetRecNum

CASE 0//1st rec
gCurrentRecord(fileRef) = 0

CASE -1//prev rec
gCurrentRecord(fileRef) --

CASE +1//next rec
gCurrentRecord(fileRef) ++

CASE +2// last
gCurrentRecord(fileRef) = FN countRecords-1

END SELECT
END IF
FN displayRecord

END IF

END FN

146

WINDOWS 

FUTUREBASIC  SWITCHING

That was way too much work and it isn't hard to guess that Apple created a one line
shortcut to handle the multi-line task. I have stressed the top, left, bottom, and right
order of the rectangle, the first trick that you will have to teach your program breaks
this rule. Rectangles are set in a completely different (L,T,R,B) order.

SETRECT(r, leftValue, topValue, rightValue, bottomValue)

a working program

Now that we are armed with the appropriate structure, it is time to create a simple
program with a single window.

DIM r AS RECT
SETRECT(r,0,0,300,300)

_myFirstWindow = 1

APPEARANCE WINDOW _myFirstWindow,"Title",@r, ¬
_kDocumentWindowClass ,_kWindowNoAttributes

DO
HANDLEEVENTS

UNTIL 0

If you encounter any errors, check your typing first. If your error message says that
"Array Variable 'SETRECT' not an array or undimensioned," then your preference
settings are incorrect. See Setting up for this Book on page 11.

If an error message tells you…

"Un-Defined Constant {KDOCUMENTWINDOWCLASS}

…then the Command menu is not set up properly. See Setting up for this Book on
page11.

31



FUTUREBASIC  SWITCHING

/*
make a new one

*/
LOCAL FN newRecord

DIM @fileRef AS LONG
DIM @recNum  AS LONG
DIM count    AS LONG
FN saveCurrentRecord

LONG IF FN getRefNums(fileRef,recNum) = _noErr
FN clearRecord
count = FN countRecords
IF count = -1 THEN count = 0
gCurrentRecord(fileRef) = count
FN writeRecord
FN displayRecord

END IF

END FN

/*
records cannot be easily removed from a
random access file, so we just erase this
one and give it a name of ** Blank Record **

*/
LOCAL FN delRecord

FN clearRecord
gStorageBin.lastName =
FN writeRecord
FN displayRecord

END FN

145

WINDOWS
FUTUREBASIC  SWITCHING

If you manage to enter and run this code without errors, you will be happy to see the
following window appear on your screen. Hit Command-Q or select Quit from the
Application menu to exit.

I can already see Microsoft cringing in fear at the depth of your newly found
programming skills.

The APPEARANCE WINDOW statement is a powerful one and we investigated
only a small portion of its prowess. Let's examine each parameter in detail to see what
other paths may have been taken. The reference manual lists parameters for the
statement like this:

APPEARANCE WINDOW [#][-] id&[, [title$][, [rect] ¬
[,[windowClass][,[windowAttributes] [, [FBAttributes]]]]]]

That strange little rotated "L" is a way of displaying very long lines in a format that is
easy to read. Normally, BASIC uses the end of a line (a carriage return) to symbolize
the end of a statement. When this new character ("¬" created with Option-L) is
encountered, the compiler knows that the line will not be complete at the carriage
return. It worked well for us too, otherwise we would have had to ship a book that
was three feet wide.

The table on the follwing pages describes the
parameters used for the APPEARANCE WINDOW
command.

32



FUTUREBASIC  SWITCHING

/*
get the info from the edit fields into the
global record

*/
LOCAL FN captureData

FN clearRecord
gStorageBin.lastName  = EDIT$(_lastNameField)
gStorageBin.firstName = EDIT$(_firstNameField)
gStorageBin.address1  = EDIT$(_address1Field)
gStorageBin.address2  = EDIT$(_address2Field)
gStorageBin.city      = EDIT$(_cityField)
gStorageBin.state     = EDIT$(_stateField)
gStorageBin.zip       = EDIT$(_zipfield)
gStorageBin.phone     = EDIT$(_phonefield)

END FN

/*
this is a convience function. it is called
whenever there is a possibility that the
information on display might be lost. this
could happen in the window is closed, if a
new record is created, if one of the
navigation buttons is pressed, etc.

*/
LOCAL FN saveCurrentRecord

FN captureData
FN writeRecord

END FN

144

WINDOWS 

FUTUREBASIC  SWITCHING

appearance window command parameters

parameter description
id& A long integer expression (1 to 2,147,483,647). If this value is positive,

the window is built in view. If it is negative, the window is created
in an invisible state.

title$ A Pascal string (maximum 255 characters).

rect An 8-byte structure in the order of top, left, bottom, right. If the
rectangle has its top and left coordinates set to zero, the window
will be centered on the main screen.

windowClass Apple has established a series of classes that designate what
functions a window is likely to perform. In general, classes parallel
layers. The alert layer is in front; the floating windows come next;
the document layer remains behind both of these. When you look
at the constants, it's easy to see possible options.

windowClass
_kAlertWindowClass

I need your attention now.

_kMovableAlertWindowClass
I need your attention now, but I’m kind enough to let
you switch out of this app to do other things.

_kModalWindowClass
System modal, not draggable.

_kMovableModalWindowClass
Application modal, draggable.

_kFloatingWindowClass
Floats above all other application windows . Available
in OS 8.6 or later.

33



FUTUREBASIC  SWITCHING

EDIT$(_stateField)     = gStorageBin.state
EDIT$(_zipfield)       = gStorageBin.zip
EDIT$(_phonefield)     = gStorageBin.phone

FN showRecordNumber
FN fixButtons
EDIT FIELD _lastNameField

gUndoText = ""// clear undo buffer
gUndoFld  = 0

END FN

/*
write the info in the global record to
the disk

*/
LOCAL FN writeRecord

DIM @fileRef AS LONG
DIM @recNum  AS LONG

LONG IF FN getRefNums(fileRef,recNum) = _noErr
LONG IF recNum => 0

RECORD #fileRef,recNum
WRITE  #fileRef,gStorageBin

END IF
END IF

END FN

143

WINDOWS
FUTUREBASIC  SWITCHING

windowClass (cont'd)
_kDocumentWindowClass

Document windows.

_kDesktopWindowClass
The desktop.

_kHelpWindowClass
Help windows.

_kSheetWindowClass
Sheets.

_kToolbarWindowClass
Floats above docs, below floating windows.

_kPlainWindowClass
Plain.

_kOverlayWindowClass
Overlays.

_kSheetAlertWindowClass
Sheet alerts.

_kAltPlainWindowClass
Plain alerts.

windowAttributes
Attributes relate to the widgets that may be added to a window. The
previous listing created a window with an inoperable close box, zoom
box, and collapse button. It also failed to include a grow box in the
bottom right-hand corner. These attributes may be added through
the windowAttributes parameter.

windowAttribute
_kWindowNoAttributes

None.

_kWindowCloseBoxAttribute
Close box.

34



FUTUREBASIC  SWITCHING

err = FN USETHEMEFONT(_kThemeEmphasizedSystemFont,¬
_smSystemScript)

EDIT$(_recNumField) = t
END IF

END FN

/*
read from the disk. place the info in the
global record

*/
LOCAL FN readRecord

DIM @fileRef AS LONG
DIM @recNum  AS LONG

FN clearRecord
LONG IF FN getRefNums(fileRef,recNum) = _noErr

LONG IF recNum => 0
RECORD #fileRef,recNum
READ #fileRef,gStorageBin

END IF
END IF

END FN

/*
get info from the disk and display it.

*/
LOCAL FN displayRecord

FN readRecord
EDIT$(_lastNameField)  = gStorageBin.lastName
EDIT$(_firstNameField) = gStorageBin.firstName
EDIT$(_address1Field)  = gStorageBin.address1
EDIT$(_address2Field)  = gStorageBin.address2
EDIT$(_cityField)      = gStorageBin.city

142

WINDOWS 

FUTUREBASIC  SWITCHING

windowAttribute  (cont'd)
_kWindowHorizontalZoomAttribute

Horizontal zoom.

_kWindowVerticalZoomAttribute
Vertical zoom.

_kWindowFullZoomAttribute
Standard zoom.

_kWindowCollapseBoxAttribute
Collapse box (sends to Mac OS X dock or shades the
window in System 9 or Classic).

_kWindowResizableAttribute
Grow box.

_kWindowSideTitlebarAttribute
Title on side for floating window.

_kWindowNoUpdatesAttribute
Does not receive update event.

_kWindowNoActivatesAttribute
Does not receive activate event.

_kWindowToolbarButtonAttribute
Has a toolbar button in title bar.

_kWindowNoShadowAttribute
No drop shadow.

_kWindowLiveResizeAttribute
Resize events repeatedly sent while window is being
sized.

_kWindowStandardDocumentAttributes
Close box, zoom box, collapse box, grow box.

_kWindowStandardFloatingAttributes
Close box, collapse box.

35



FUTUREBASIC  SWITCHING

/*
look at the file and determine how many records
are present. return -1 if there are no records

*/
LOCAL FN countRecords

DIM count AS LONG
DIM @fileRef AS LONG
DIM @recNum  AS LONG

LONG IF FN getRefNums(fileRef,recNum) = _noErr
count = LOF(fileRef,SIZEOF(storageBinRecord))

XELSE
count = -1

END IF
END FN = count

/*
display the record number of the current
window in the record number display field

*/
LOCAL FN showRecordNumber

DIM err AS OSErr
DIM t as STR255
DIM @fileRef AS LONG
DIM @recNum  AS LONG

LONG IF FN getRefNums(fileRef,recNum) = _noErr
LONG IF gCurrentRecord(fileRef) == -1

t = "No Records"
XELSE

t = "Record"+STR$(gCurrentRecord(fileRef)+1)+" of"+STR$(FN
countRecords)
END IF

141

WINDOWS

CLIP REGION

The clip region is the part of 
a window into which you 
may draw. Normally, this 
includes the entire content 
area of a window. When 
part of a window is exposed
by being moved, resized, 
opened, or uncovered, the 
area that needs to be 
refreshed is collected into 
an update region. During an 
update event, the clip 
region and the update 
region are swapped. This is 
a good thing because your 
program can blindly draw to 
the entire window, but only 
the portion requiring the 
update will see any change.

FUTUREBASIC  SWITCHING

FBAttributes FutureBASIC has its private set of attributes that are not built into
Apple's code. These include special behaviors that we have found
over the years to be helpful in easing some of your programming
woes.

FBAttributes
_updateVisRgn

This attribute affects how the window’s clip region will
be set when FutureBASIC calls your dialog-event
handling routine with a _wndRefresh event.  If you
specify this attribute, the clip region will be set to include
only that part of the window which was identified as
actually needing a refresh (the clip region will be reset to
its previous value when the routine exits).  If you omit
this attribute, the clip region will be set to include the entire
window (possibly excluding controls, edit fields, etc.)

_clickThru
This attribute affects what happens when your program
activates the window in response to a _wndClick event.
If the _clickThru attribute is set, the activating click will
be “passed through” to the window; this may cause other
events (such as _btnClick or _efClick) to be generated,
depending on what was clicked on.  If you omit this
attribute, two separate clicks are required: one to activate
the window and one to interact with its contents.

_noAutoFocus
Use this attribute to prevent the tab key from advancing
the keyboard focus in edit fields.

_keepInactive
This attributes insures that the window will never be
activated. Controls in the window will not function If
you bring the window forward under program control
(WINDOW statement)  it will behave normally. This type
of window is intended for use as a backdrop.

36



FUTUREBASIC  SWITCHING

/*
This function looks at the current window to
determine if it is a data base window. If so,
it extracts the number of the record on display
from the global array gCurrentRecord. It fills
in two variables from the calling function:
the file reference number (which must be a
long integer) and the current record number
variable (which must also be a long integer).

*/

LOCAL FN getRefNums(@fileRefPtr AS PTR,@recNumPtr AS PTR)

DIM fileRef AS LONG
DIM recNum  AS LONG
DIM result  AS LONG

result = _noErr
fileRef = WINDOW(_outputWnd)
LONG IF fileRef <= _maxDBWinds AND fileRef > 0

recNum = gCurrentRecord(fileRef)
XELSE

recNum  = -1
fileRef = -1
result  = -1

END IF

& fileRefPtr,fileRef
& recNumPtr ,recNum

END FN = result

140

WINDOWS 

FUTUREBASIC  SWITCHING

a side bar please, your honor

One of the tricks that you will see us use from time to time is a short cut that is used to
add constants together. We could do it this way…

newAttribute = _kWindowCloseBoxAttribute + _kWindowResizableAttribute

Or we could let FutureBASIC add the constants together for us.

newAttribute = _kWindowCloseBoxAttribute_kWindowResizableAttribute

windows with widgets

We now have several different types of windows that can be created. You will note in
the next example that we don't set up any special handlers for window management
except for the code that closes a window. If necessary, review the section aboutevent
loops on page21.

DIM r AS RECT
SETRECT(r,0,0,300,300)

_document1 = 1
_document2 = 2
_myFloatingWindow = 3

APPEARANCE WINDOW _document1,"Doc",@r,_kDocumentWindowClass ¬
,_kWindowStandardDocumentAttributes

SETRECT(r,250,250,500,500)
APPEARANCE WINDOW _document2,"Doc",@r,_kDocumentWindowClass ¬

,_kWindowStandardDocumentAttributes
SETRECT(r,50,50,500,110)
APPEARANCE WINDOW _myFloatingWindow,"",@r,_kFloatingWindowClass ¬

,_kWindowStandardFloatingAttributes_kWindowSideTitlebarAttribute

37



FUTUREBASIC  SWITCHING

The biggest part of the detail work is performed in this include file. Here we access
routines that read, write, and clear the global record (which exactly matches our file
record).  Tasks are broken into simple steps like determining how many records exist in
a file or displaying the current record number.

When a file is first created, it has no records, and the record count is set to -1. Special
considerations are given to files with no records. For instance, you must click the New
button before you can type.

Notice also that we begin the file with prototypes to provide access to functions that will
be created in files farther down the list.

Files & Records.incl

!!!Prototypes!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
DEF FN openSBWindow(wRef AS LONG, wTitle AS STR63)
DEF FN fixButtons
DEF FN showRecordNumber
DEF FN getNextRef

!!!Data & Record Related!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

/*
this places zeros in every byte of the record

*/

LOCAL FN clearRecord

DEF BLOCKFILL(@gStorageBin,SIZEOF(gStorageBin),0)
END FN

139

WINDOWS
FUTUREBASIC  SWITCHING

LOCAL FN doDialog
DIM action AS LONG
DIM reference AS LONG
action = DIALOG(0)
reference = DIALOG(action)

LONG IF action = _wndClose
WINDOW CLOSE reference

END IF
END FN

ON DIALOG FN dodialog
DO

HANDLEEVENTS
UNTIL 0

This small program creates two document windows and a floating window. There is
a lot of new ground covered in just a few lines. For one thing, we have introduced a
dialog handler to check for clicks in the close box. This is not handled automatically by
the runtime because it is likely that you will need to save data, or warn your program
user that data needs to be saved, before the window goes away.

The dialog routine checks to see if the action matches the _wndClose message and if
so, closes the appropriate window. This same template is what will be used for dozens
of user-originated actions. You'll see it often.

These window routines are revised versions of an earlier listing. Only a few constants
were changed. You may have noticed that the code defines constants to be used as
window reference numbers. (In FutureBASIC, a constant always begins with an
underscore.) This is not a requirement, but it makes the code easier to follow. Say, for
instance, that your program operated with a single floating tool window which
happened to be window number 35. Wouldn't it be easier to read the code when it
contained references to WINDOW _toolWindow than WINDOW 35 ?

38



FUTUREBASIC  SWITCHING

!!!Storage Bin Record Info!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

BEGIN RECORD storageBinRecord// this is the format of the database
DIM lastName  AS STR31// record
DIM firstName AS STR31
DIM address1  AS STR31
DIM address2  AS STR31
DIM city AS STR31
DIM state AS STR31
DIM zip  AS STR31
DIM phone AS STR31

END RECORD

//we allow only one record in mem at a time
DIM gStorageBin AS storageBinRecord
// current record number for each window
DIM gCurrentRecord(_maxDBWinds) AS LONG

!!!Odds & Ends!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

_margin = 8// a default margin
_colCount = 4//number of printed columns
_splashAlert = 128
_errorAlert  = 129

138

WINDOWS 

FUTUREBASIC  SWITCHING

A lot of things are handled in this program that we didn't write code for. Try moving
the windows; switching from one window to another; checking to see if the document
windows ever come in front of the floating window, etc. You may even collapse the
window and watch it sashay its way into the tool bar.  Please note that no windows
were harmed in the making of this sample application.

39



FUTUREBASIC  SWITCHING

_firstBtn
_prevBtn
_nextBtn
_lastBtn

// preferences window
_preftitleFld
_prefIncludeDateBtn
_prefIncludePageNumberBtn
_prefOKBtn
_prefCancelBtn

END ENUM

!!!Preferences!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

BEGIN RECORD prefsRecord // add any prefs to this record
DIM reportTitle AS STR255
DIM titleInfoFlags AS WORD
DIM nextFileNumber AS WORD
DIM sparePref1 AS LONG
DIM sparePref2 AS LONG
DIM sparePref3 AS STR255

END RECORD

//titleInfoFlags
_includeDateMask = 1
_includePageNumber = 2

DIM gPref AS prefsRecord

137

WINDOWS

FUTUREBASIC  SWITCHING

transition rects

So far, we've followed the straight and narrow. Now it's time to rev the engine a bit
and see what the Macintosh Window Manager can do. We begin by rebuilding the
previous listing, but this time we will add a transition rect. This is the source rectangle
from which a window will spring. It can actually come from any rectangle. For instance,
you may wish to have a button click open a window and the transition rect would
begin with a rectangle taken from the button.

The next listing adds a half dozen lines which require some explanation. The first is a
DIM statement which contains the @ symbol. Recall that this prevents the variable
from being placed in a register. We need to do that because GET WINDOW, used a
bit farther down in the listing, expects the window reference parameter (w) to be an
address so that it can fill the variable with the proper information. This would not
work with a register variable because a register variable has no address.

The actual work is performed in the DEF TRANSITIONRECT statement. After
capturing a window pointer and extracting the content rect from that window, we set
a FutureBASIC global rectangle using this statement. FutureBASIC will use this rectangle
from now until the program quits. Every window will zoom from the same rectangle.
In order to turn this feature off, the program must reset the transition rect to zeros as is
done after the window has been created.

40



FUTUREBASIC  SWITCHING

  !!Edit menu stuff!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

BEGIN ENUM 1 //edit menu
_iUndo
_-
_iCut
_iCopy
_iPaste
_iClear
_iSelectAll
_-
_iPreferences

END ENUM

DIM gUndoText AS STR255
DIM gUndoFld  AS LONG

!!!Window & DataBase Globals!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

_prefWnd    = 500
_maxDBWinds = 100

DIM gEFfilterAddr AS LONG // address of edit fld filter

BEGIN ENUM 1 // objects in storage bin window
// storage bin window

_recNumField
_lastNameField
_firstNameField
_address1Field
_address2Field
_cityField
_stateField
_zipfield
_phonefield
_delBtn

136

_newBtn

WINDOWS 

FUTUREBASIC  SWITCHING

DIM r AS RECT
DIM @ w  AS WindowRef
SETRECT(r,0,0,300,300)
_document1 = 1
_document2 = 2
_myFloatingWindow = 3

APPEARANCE WINDOW _document1,"Doc",@r,_kDocumentWindowClass ¬
,_kWindowStandardDocumentAttributes

GET WINDOW _document1, w
LONG IF FN GETWINDOWBOUNDS( w, _kWindowContentRgn, r ) == _noErr

DEF TRANSITIONRECT(r.left, r.top, r.right, r.bottom)
END IF
SETRECT(r,250,250,500,500)
APPEARANCE WINDOW _document2,"Doc",@r,_kDocumentWindowClass ¬

,_kWindowStandardDocumentAttributes
DEF TRANSITIONRECT(0, 0, 0, 0)
SETRECT(r,50,50,500,110)
APPEARANCE WINDOW _myFloatingWindow,"",@r,_kFloatingWindowClass ¬

,_kWindowStandardFloatingAttributes_kWindowSideTitlebarAttribute

LOCAL FN doDialog
DIM action AS LONG
DIM reference AS LONG
action = DIALOG(0)
reference = DIALOG(action)
LONG IF action = _wndClose

WINDOW CLOSEreference
END IF

END FN

ON DIALOG FN dodialog
DO

HANDLEEVENTS
UNTIL 0

41



FUTUREBASIC  SWITCHING

You'll spend more time setting up a clean set of globals than most anything else in a
program. This file enumerates the constants that will be used menus and menu
items. It ticks off the individual elements that will populate the windows. It builds
the records that are used both for reading and writing individual file records and for
storing the preferences.

If you study the code, you'll see that we allow for 100 databases to be opened at a
time. This is controlled by the constant _maxDBWinds. If we change this constant,
the entire program changes to handle the new value. Note that there is a maximum
of 255 files that may be opened at once, so keep this number down below 250. The
theoretical limit for the number of records is 2 billion, but other practical
considerations make this figure unobtainable. For instance, the size of each record
multiplied by 2 billion would make a very large file indeed.

There is a small, as yet unmentioned, formatting trick used here. The white text on a
black background is called a bookmark and is created by selecting  Add Bookmark
from the pop-up button at the top of any edit window.

Storage Bin.glbl

!!!Menu & Window Constants!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

BEGIN ENUM 1 //menu id's
_mFile
_mEdit

END ENUM

BEGIN ENUM 1 //file menu
_iNew
_iOpen
_iClose
_-
_iPageSetup
_iPrint
_-
_iQuit

END ENUM

135

WINDOWS
FUTUREBASIC  SWITCHING

staggering windows

In the case of multiple document windows, you may need to stagger each new window
below and to the right of any previously created windows. FutureBASIC has a built-in
routine to handle this too.

DEF NEWWINDOWPOSITIONMETHOD(pMethod)

The pMethod parameter may be any one of the following values:

pMethod Description
zero Do nothing.
_kWindowCenterOnMainScreen

Center window on the main monitor.
_kWindowCascadeOnMainScreen

Offset each new window on the main monitor as it is created.
_kWindowAlertPositionOnMainScreen

Place the window just above the center point on the main monitor.

The value established here will remain in effect for all windows created until the
pMethod parameter is set to zero. The following example staggers ten document
windows across the screen.

DIM r    AS RECT
DIM x    AS LONG
SETRECT(r,0,0,300,300)

DEF NEWWINDOWPOSITIONMETHOD(_kWindowCascadeOnMainScreen)

FOR x = 1 TO 10
APPEARANCE WINDOW x,"Doc"+str$(x),@r,_kDocumentWindowClass ¬

,_kWindowStandardDocumentAttributes
NEXT

DO
HANDLEEVENTS

UNTIL 0

42



FUTUREBASIC  SWITCHING

This small file loads the preferences, sets up vectors and falls into the
program's only event loop.

Storage Bin.main

/*
tell the compiler that we need the routines
for the prefs file from the header folder

*/
INCLUDE "Subs PrefsFile.Incl"

// load the existing prefs
GET PREFERENCES "Storage Bin Prefs",gPref

// our finished app is named "Storage Bin"
OUTPUT FILE "Storage Bin"

// hop over to the init routines
FN initProgram

/*
set up the vectors for event handling and
dialog handling

*/
ON MENU FN handleMenu
ON DIALOG FN handledialog

// here's the main event loop
DO

HANDLEEVENTS
UNTIL gFBQuit

// store the prefs when the progam is finished
PUT PREFERENCES "Storage Bin Prefs",gPref

134

WINDOW 
 BACKGROUNDS 

FUTUREBASIC  SWITCHING

Pop Quiz 3: Were you paying attention when we discussed variables?
Why did we dimension x as a long integer variable when a short, word
length variable would have done the job?

backgrounds

Up to this point, we have determined where a window might be located, what class it
would be (the layer), and what attributes it would have (the widgets). But all of these
windows have been plain white. We can polish things a bit by letting the Window
Manager place the pin-striped background in the content area. The syntax is:

DEF SETWINDOWBACKGROUND(_backgroundConstant,applyNowBool)

43



FUTUREBASIC  SWITCHING

divide and conquer

It is possible to stuff all of the code for an entire project into a s
file. I have heard from more than one programmer that attempted to
work with a 10,000 + line file. But possible and convenient are two
different things. You'll do much better by breaking your project into
logical chunks.

Some of these pieces are almost a requirement: the main file, the resource
file, the global file, etc. Others are created entirely at the discreti
the programmer. (That would be you.)  I chose to create separate files
for dialog actions, window actions, print routines, menu handlers, utility
functions, and file and record handlers.

To type in this program, you will need to create a file (or open it if 
was already created as part of this exercise) and enter the code. It is n
necessary to enter all of the remarks, but it will make things easier
when you return to the code at a later date. Remember that, even if this
is not the exact program you have dreamed of creating all of your life,
it will contain pieces and parts that will be of use in many different
applications.

a hack or two

In most applications, you'll see code that checks what window is active then it looks to
see which button or edit field inside of that window was accessed. This works OK
because most programmers start renumbering their buttons every time they start a
new window. There could, therefore, be two buttons with an ID of one in two different
windows.

I decided to make each ID unique and that uniqueness is guaranteed by enumerating
all of the buttons and fields in a single BEGIN/END ENUM structure.  Take a look at
the global file listing for details on how this is done.

This entire project contains enough variable space to hold one record. As soon as work
with that record is finished, it is placed back on the disk before a new one is read in.

It does not matter what information is contained in the record. You may add or remove
items as fits your individual needs. Just remember that once the file is created, you will
need to call a halt to the changes because records written in one format are not easily
read back in another.

I'll place a brief explanation at the top of each file and insure that a sufficient number of
comments are scattered throughout the code. If you run into problems, the entire project
is located on your FutureBASIC CD for comparison and trial. And remember that this
was written to be changed. Once you get things running and you are comfortable with

133

the way that everything works, make a copy of the project and start experimenting.

WINDOW 
BACKGROUNDS 

FUTUREBASIC  SWITCHING

Acceptable constants are:

_kThemeActiveDialogBackgroundBrush
_kThemeInactiveDialogBackgroundBrush
_kThemeActiveAlertBackgroundBrush
_kThemeInactiveAlertBackgroundBrush
_kThemeActiveModelessDialogBackgroundBrush
_kThemeInactiveModelessDialogBackgroundBrush
_kThemeActiveUtilityWindowBackgroundBrush
_kThemeInactiveUtilityWindowBackgroundBrush
_kThemeListViewSortColumnBackgroundBrush
_kThemeListViewBackgroundBrush
_kThemeIconLabelBackgroundBrush
_kThemeListViewSeparatorBrush
_kThemeChasingArrowsBrush
_kThemeDragHiliteBrush
_kThemeDocumentWindowBackgroundBrush
_kThemeFinderWindowBackgroundBrush

The Boolean parameter applyNowBool tells the runtime to redraw the window contents
immediately (if non-zero) or wait until the window is drawn in response to an update
event (_false).

DIM r    AS RECT
SETRECT(r,0,0,300,300)

APPEARANCE WINDOW 1,"Doc",@r,_kDocumentWindowClass ¬
,_kWindowStandardDocumentAttributes

DEF SETWINDOWBACKGROUND( ¬
_kThemeActiveDialogBackgroundBrush ,_zTrue)

DO
HANDLEEVENTS

UNTIL 0

44



FUTUREBASIC  SWITCHING

This will open the window and a palette of possible items.

There are some important things to remember about standard Macintosh alert
windows. The most material point is that the first item created is the default button.
This is often an OK button, but regardless of the title, this button will be clicked when
the user presses return. We make the Open button our first button.

Once you have made the Open button the first button and the Create button the second
item, all other dialog pieces are of less importance. I placed some static, explanatory
text next to the buttons and put a graphic at the top of the screen. Feel free to make
modifications to this as you see fit.

The picture was created in Photoshop, then pasted into a PICT resource. I created a
picture dialog item, then set the ID to match the pasted picture.  When the window
has taken on an acceptable form, save the file and exit ResEdit.

132

WINDOW 
 BACKGROUNDS 

FUTUREBASIC  SWITCHING

Up to this point, all illustrations have been made with the Aqua look of Mac OS X. But it
is possible to run the same code in Mac OS 9. The window will take on the Platinum
look, but will remain functionally equivalent.

 

45



FUTUREBASIC  SWITCHING

Our finished project window will look like the illustration on the right. We will be adding
the files one at a time by creating them, then typing in the text.

resources

We'll need to create a resource file and it will have to contain an alert box that will be
pressed into service both as a splash window and an "About" box. Open ResEdit
and create a new file. (Refer to page 54 for details if necessary.) Create a file
named Storage Bin.rsrc and save it in the folder with the other Storage Bin files.

From the resource menu, select Create New Resource. Click ALRT in the list or
type it into the single edit field.

dialog item list

At this point, we have only created a blank window. Now we need to add
buttons and edit fields. This is handled as a resource list with a type of DITL for
Dialog ITem List. We can access the list by selecting Open DITL Editor from the
Resource menu.

131

BUTTONS

FUTUREBASIC  SWITCHING

BUTTONS

Throughout this section we will use the terms button and control interchangeably. The
user perceives these screen devices as buttons. Apple's toolbox and programmer
documentation refers to them as controls. Our attempts to consolidate the two terms
by developing a hybrid (like buttrol or contton) were a dismal failure.

what is a button?

In the olden days (circa 1998) a button was composed of code that was held in an
executable resource called a CDEF (Control DEFinition). In more modern times, CDEFs
have gone away (to wherever CDEFs go) and have been replaced by procedures. To
put it another way, controls used to be encapsulated in self contained resources that
had to have a 680x0 entry point, even if they were being executed in PPC, and had to
be compiled with special compiler directives so that they could be accessed by your
program.

Modern CDEFs are really just routines that  are built into the system or into your
program and are called into use to draw or click or hilite a button. In fact, you can
actually put code into your application that creates and maintains a custom button.
But that's a bit advanced for this document.

Modern buttons are more than clickable shapes. They can be lines, rectangular borders
that maintain content based on a pop-up menu or a check box, tabs, date and time
fields, and pretty much anything that you can imagine.

is it a button or an edit field?

The Appearance Manager even has a button that accepts text just like the time tested
edit fields that have long been a part of FutureBASIC. Unfortunately, these standard
text field buttons are not terribly clever. They do not understand some of the things
that we have come to expect like multiple font styles and sizes. You can make such a
button, but  the limited functionality of this type of field makes it useful only in a few
situations. One such situation would be fields that appear and disappear in response
to clicks in a tab, but I'm getting ahead of myself again.

46



FUTUREBASIC  SWITCHING

The order of files in a project has a certain level of importance, but after general groups
have been set up as indicated, you can pretty much arrange the individual includes as
you see fit. In a project, a file can only "see" files that have come before it. This means
that a file at the top of the list cannot call a function that lives in a file that is lower in the
list. Our work around is to prototype the out-of-place function using the DEF statement
(page20).

adding files to a project

The project menu reacts to the current placement of windows. If the top window is the
project window, then available menu items relate to things that can be done to the
project. For instance, you may add a file to the project when it is frontmost, but not
when some other window is on top of it. Similarly, you may move the current file
being edited into the project when the editor window is in front.

The project manager is also smart enough to know where a file should be added. If
you click the name of a group (like the Includes group) then the file is added to the top
of that group. Don't worry if you add a file and it shows up in the wrong place. Just
grab it with your cursor and drag it to the correct position.

The first thing that we are going to do is create a new file (File menu> New) and
save it. We'll call the file Utility FNs.incl. We will want the file to be added to the
project in the Includes group, so click the project window to activate it, then click
the Includes group to highlight it.

Switch back to the new blank edit window that you created named Utility
FNs.incl and pull down the Project menu. You'll find an option named Add
"Utility Fns.incl" to Storage Bin.!. Select this option and the new file will be placed

at the correct location in the project.

Items may be deleted from a project by selecting
them and hitting the delete key. You may
change the name of a group by double-clicking
it. Entire groups or individual files may be
dragged into new positions.

Our project is set up in a specific order and all
of the necessary prototypes are established so that we can call into functions that have
not yet been established. You may change the order of includes, but doing so may
necessitate the establishment of additional prototypes.

130

BUTTONS 

FUTUREBASIC  SWITCHING

buttons are smart potatoes

A button maintains its image on the screen without any assistance from your program.
That's important. If you wanted to draw a line in the window, then you would have to
redraw that line each time the window was brought forward or resized or anything
happened that caused the window to ask for an update. If the window went to the
background, you would need to dim the line because it was no longer part of an active
window. None of this is required for a line created as a button. It knows when to draw,
when to hilite, when to dim and which fork to use for the salad. You just build it and
forget it.

Another concept that will be covered here is called embedding. One button may be
made to act as a dependent child of another button. The most common type of embedding
involves radio buttons. All radio buttons in a group are embedded into a super control.
(No, it doesn't wear tights and a cape.) Instead of asking each and every radio button if it
is the one that is selected and manually maintaining the whole thing, we just ask the
super control which one is selected. When one radio button is clicked, the super control
insures that all others are unclicked. Hmmm... Maybe it does wear tights and a cape.

Platinum or Aqua

If you build a button, it will usually work in Mac OS 9 or Mac OS X. If you run the
program in Mac OS 9, you will see the Platinum look. If you run the exact same code in
Mac OS X, you will see the Aqua facade. This is all automatic and requires nothing
special from your program. But a caution is in order here: run your program under
both systems to insure that there is sufficient room in the window to accommodate the
buttons. Most things in Aqua generally require a bit more pixel real estate than their
Platinum counterparts.

 
 Platinum Version

 
Aqua Version

47



FUTUREBASIC  SWITCHING

The project manager will create a new project and a main file and then open both on the
screen. The main file is already named Storage Bin.main and is placed in the proper
position at the bottom of the project window. Another file is added in the headers section
named RnTm appearance.Incl. This is the file that incorporates the intelligence necessary
to process things like the APPEARANCE BUTTON statement and the EDIT FIELD
statement.

We will add other files to the project as we proceed. A resource file will be added to the
Resources section. A file containing global dimension statements will be placed under
the Globals heading. All other files will be placed in the Includes section. In a larger
project, we might add several other folders to keep the code organized. There is a
theoretical limitation of 32,767 files and groups that may be added to a project, but you
are unlikely to run into that limit.

129

BUTTON SYNTAX

FUTUREBASIC  SWITCHING

syntax

The APPEARANCE BUTTON statement has a robust syntax. You'll need to refer to
this documentation or to the Reference Manual for quite a while before it is committed
to memory. Here is what the statement looks like:

APPEARANCE BUTTON id, state, value, min, max, title, rect, type

Parameter Description
id This is a long integer in the range of 1 to 2,147,483,647. If the number

is positive, the button is created in its visible state. If it is negative, the
button is initially invisible.

You may also use an OSType for a button id number. An OSType is
really a long integer that can be represented as four ASCII characters.
An example would be _"CNCL" which might be used to represent a
Cancel button. Or you could just as easily set up a constant with
_cancelButton = 23. Just pick the method that appeals to you.

state This parameter may be any one of the following:
_grayBtn (disabled)
_activebtn (default/active)
_markedBtn (selected)

value This is the initial value for a control. It is generally 1. It is usually an
integer value in the range of zero to 32,767.

min The minimum value for this control. This is usually zero.

max The maximum value for this control. This is often 1.

title The title is a 255 character Pascal string.

rect The rectangle determines where the button will be placed in the current
window.

type This parameter covers a lot of ground. We will devote most of the
rest of this section trying to document its major components. Some of
the more recognizable values are:
_kControlPushButtonProc
_kControlRadioButtonProc

48

_kControlCheckBoxProc



FUTUREBASIC  SWITCHING

the project

From the Project menu, select New Project>Appearance Compliant. You will be
presented with a dialog that asks for the name of the project and allows you to select a
location for the project folder.  The pi symbol (!) is traditionally used to suffix a project
name. This is not a requirement. We will name our project Storage Bin.

128

PUSH BUTTONS 

FUTUREBASIC  SWITCHING

push buttons

It may surprise you to learn that there are actually dozens of push button styles. Buttons
may have different bevels and shapes. They may include icons. They can even include
a pop-up menu, though we won’t deal with that right now.

In the next example, we will introduce some new concepts without fully explaining
every line. You may glance at these new items (like the TEXT statement) and discern
what their purpose might be or you may look up unfamiliar items in the reference
manual. One thing that had to be done in preparation for this listing is that a resource
file had to be created which contained an icon and a picture. You can learn more about
this in the Reference Manual section named RESOURCES.

Some of the parameters used are nearly universal. For instance, we tagged an extra
constant onto the first button:

_kControlUsesOwningWindowsFontVariant.

Where in the world do they get the loooooooooooong names?

When this constant is added to almost any type of button, the current window font (set
by your program) is used in place of a system variant. That is why we set the font for
the window using a TEXT statement and why we attached the rather verbose constant
to the type.

The following illustration shows the output for the next listing as both Aqua (Mac OS X)
and Platinum (Mac OS 9). Note that the amount of bevel used for a button is adjustable
in the Platinum window, but is ignored when building controls for the Aqua interface.

49



FUTUREBASIC  SWITCHING

A COMPLETE DATABASE APPLICATION

OR HOW TO DECORATE A POODLE

WITH BOTTLE CAPS AND A HOT GLUE GUN.

All of these pieces and parts have been great and  have shown us how to complete tiny
parts of a larger task. But when it comes to creating a full-blown application, we are
likely to find that there are many specifics of programming in FutureBASIC that have
not been covered. With this in mind, I thought it would be best to create a complete
application.

There are many types of applications: games, accounting applications, programs that
perform detailed calculations… But every one of these needs to perform some basic
tasks like reading and writing files, storing preferences, setting up menus and other
tasks that are inescapable in real applications. That is why I chose to create a database. It
covers all of these items in the minimum amount of code. In fact, our working database
application has just over 400 lines of source code. (This count excludes blank lines and
remarks.)

how do we attack the problem?
We'll break this discussion down into several phases so that you can grasp each concept.
We will have to deal with project management first. This is something that was not
important in the single file applications that we have created thus far. We will need to
revisit resources to build a few pieces of our application. The actual coding will be
discussed as principles and practices without repeating the details of each line.

127

PUSH BUTTONS 

FUTUREBASIC  SWITCHING

RESOURCES "Button Display.rsrc"// this holds a picture and an icon
DIM r  AS RECT // generic rectangle
DIM pR AS RECT // picture rectangle
DIM h  AS HANDLE // holds the picture resource handle
DIM id AS LONG // the id number for the button

// setup
_btnHt = 24 // height of each button
_btnWd = 280 // width of each button
_btnMargin = 8 // padding around each button
id = 1 // id of first button

// create a window
SETRECT(r, 0, 0, _btnWd_btnMargin_btnMargin, 400)
APPEARANCE WINDOW 1, "Push Buttons", @r
DEF SETWINDOWBACKGROUND( ¬

_kThemeActiveDialogBackgroundBrush ,  _zTrue)

50



PREFERENCE 
FILES 

FUTUREBASIC  SWITCHING

LOCAL
DIM action,reference
LOCAL FN dodialog

action = DIALOG(0)
reference = DIALOG(action)
LONG IF action = _btnclick

SELECT reference
CASE 1 //yes

BUTTON 1,2
BUTTON 2,1

CASE 2 //no
BUTTON 1,1
BUTTON 2,2

CASE 3 //save prefs
FN savePreferences
gFBquit = _zTrue

END SELECT
END IF

END FN

ON DIALOG FN doDialog

FN readPreferences
FN setUp

DO
HANDLEEVENTS

UNTIL gFBquit

126

PUSH BUTTONS 

FUTUREBASIC  SWITCHING

SETRECT(r,  _btnMargin,  _btnMargin, _btnMargin_btnWd,  _btnMargin_btnHt)
TEXT _Times,  14,  _boldBit%

// push buttons
APPEARANCE BUTTON id, _active, 0, 0, 1,  ¬

"_kControlPushButtonProc",@r,     ¬
_kControlPushButtonProc_kControlUsesOwningWindowsFontVariant

id ++ : OFFSETRECT(r, 0, _btnHt_btnMargin)
APPEARANCE BUTTON id, _active, 0, 0, 1,  ¬

"_kControlBevelButtonSmallBevelProc",@r,  ¬
_kControlBevelButtonSmallBevelProc

id ++ : OFFSETRECT(r, 0, _btnHt_btnMargin)
APPEARANCE BUTTON id, _active, 0, 0, 1,  ¬

"_kControlBevelButtonNormalBevelProc",@r,  ¬
_kControlBevelButtonNormalBevelProc

id ++ : OFFSETRECT(r, 0, _btnHt_btnMargin)
APPEARANCE BUTTON id, _active, 0, 0, 1, ¬

"_kControlBevelButtonLargeBevelProc",@r,  ¬
_kControlBevelButtonLargeBevelProc

// max value is cicn ID
id ++ : OFFSETRECT(r, 0, _btnHt_btnMargin)
r.bottom += _btnHt
APPEARANCE BUTTON id, _active, 0, 0, 256,  ¬

"_kControlPushButRightIconProc", …
@r, _kControlPushButRightIconProc

id ++ : OFFSETRECT(r, 0, _btnHt_btnMargin_btnHt_btnMargin)
APPEARANCE BUTTON id, _active, 0, 0, 256,  ¬

"_kControlPushButLeftIconProc",@r,  ¬
_kControlPushButLeftIconProc

51



PREFERENCE FILES 

FUTUREBASIC  SWITCHING

DIM gPref AS prefsRecord
END GLOBALS
LOCAL FN readPreferences

// set up defaults in case there is nothing to read (as
// would be the case with the first run of the program)
gPref.prefChoice = _zTrue
gPref.prefText   = "Text is saved with prefs"
// read the prefs on top of the defaults
GET PREFERENCES "My Pref File",gPref

END FN

LOCAL FN savePreferences
gPref.prefChoice = (BUTTON (1) = _markedBtn)
gPref.prefText   = EDIT$(1)
PUT PREFERENCES "My Pref File",gPref

END FN

LOCAL
DIM r AS RECT
LOCAL FN setUp

SETRECT(r,0,0,220,136)
WINDOW 1, "Preferences",@r
SETRECT(r,16,16,window(_width) - 16,32)
BUTTON 1,1, "Yes",@r,_radio
OFFSETRECT(r,0,24)
BUTTON 2,1, "No",@r,_radio
OFFSETRECT(r,0,24)
EDIT FIELD 1,"",@r
OFFSETRECT(r,0,24)
r.bottom = r.bottom + 8
BUTTON 3,1,"Save Prefs",@r
IF gPref.prefChoice THEN BUTTON 1,2 ELSE BUTTON 2,2
EDIT$(1) = gPref.prefText

END FN

125

PUSH BUTTONS 

FUTUREBASIC  SWITCHING

h = FN GETPICTURE(256)

LONG IF h
id ++ : OFFSETRECT(r, 0, _btnHt_btnMargin_btnHt_btnMargin)
pR;8 = @h..picFrame%
OFFSETRECT(pR, -pR.left, -pR.top) // picture may not start at 0, 0
OFFSETRECT(pR, r.left, r.top) // offset to next button position
OFFSETRECT(pR, 60, 0) // center horizontally in window
APPEARANCE BUTTON id, _active, 256, 0, 1, ¬

"_kControlPictureProc", ¬
@pR, _kControlPictureProc

END IF

DO
HANDLEEVENTS

UNTIL 0

Wow! That's a lot of code! But if we take it line by line, it's easy to understand.

The DIM statements outline what variables will be used. The next section sets up a few
constants (_btnHt, _btnWd, _btnMargin) which are used when calculating the size
and position of each button.

A window is built and the background is set, just like we studied in the previous
section relating to windows.  A new statement (TEXT) is introduced that sets the font
for the window to be Times, 14 point, bold. This is not a requirement, but it makes the
change obvious when we tell the first button created to use the font information that is
currently established for the window.

Here comes the beef. Our first control is a standard push button that takes advantage
of the option to use the current window font. Since this is our first button (you always
remember the first one), we'll take a detailed look at its innards.

APPEARANCE BUTTON id, _active, 0, 0, 1,  ¬
"_kControlPushButtonProc",@r,     ¬
_kControlPushButtonProc_kControlUsesOwningWindowsFontVariant

52



PREFERENCE FILES 

FUTUREBASIC  SWITCHING

A simple version of the code would look like the following fragment:

INCLUDE "Subs PrefsFile.Incl"
BEGIN GLOBALS
BEGIN RECORD prefsRecord
  DIM prefChoice AS BOOLEAN
  DIM prefText AS STR255
END RECORD
DIM gPref AS prefsRecord
END GLOBALS

// at startup
GET PREFERENCES "My Pref File",gPref
// at shutdown
PUT PREFERENCES "My Pref File",gPref

In this fragment, the file that we used is called "My Pref File".  It doesn't matter what
name you provide. If the file does not exist, it will be created. If it does exist, it will be
used. If the user is switching between different versions of the system software (like
Mac OS X and System 9) there will be two different preference files of the same name
in two different places. (Apple's choice — not ours.)

A real program with realistic preferences will need to do some additional legwork. For
instance, you would want to set default values for each preference at startup. That
way, if the application was being run for the first time, the default values would be
used when the preference file was not found. When it is time for the application to
shut down, these default preferences will be written back to the disk and will be available
the next time the application is run.

The next listing shows a small, but working application that stores a string and a boolean
value in a preference file. If you run this program, quit it, then run it again, you'll see
that your settings are always remembered.

INCLUDE "Subs PrefsFile.Incl"
BEGIN GLOBALS
BEGIN RECORD prefsRecord
  DIM prefChoice AS BOOLEAN
  DIM prefText AS STR255
END RECORD

124

PUSH BUTTONS 

FUTUREBASIC  SWITCHING

The id is 1 because that is what we set the variable to at the top of the listing. We tell the
Appearance Manager that we want this button to be _active. The only possible values
for this type of button are zero and one. Zero means the normal state. One means that it
is currently being pressed.  You can't set a button to a value of one to make it appear to
be pressed.

Each of these controls is given a name to match the constant used to build that particular
type of button. Realistic names are more likely to be things like OK or Cancel.

The final parameter is the button type. In this particular fragment, we append the constant
_kControlUsesOwningWindowsFontVariant to the type so that the window font is
used.

THE SAME BUTTON DONE WITH AND
WITHOUT THE USE OF THE WINDOW FONT.

While the differences are subtle in this example, window fonts can vary greatly and are
limited only by the imagination and, sometimes, the bizarre tastes of a programmer.

default (pulsating) buttons

In Mac OS 9 and earlier versions of the system software, the default button was the one
with a frame around it.

Mac OS X introduces a new type of button that pulsates. It reminds me of a third grader
raising his and saying, "Pick me. Pick me."

There is additional work involved in producing the newer type of default button and it
requires the use of a new statement to set specific flags inside of the button's stored data.
For this we use DEF SETBUTTONDATA. In this particular case, the syntax is simple
and to the point. The following code creates the button and sets it to pulsate.

APPEARANCE BUTTON 1,,,,, "OK", (20,20)-(120,40), _kControlPushButtonProc
bool = _zTrue
DEF SETBUTTONDATA( 1, _kControlEntireControl, ¬

53

_kControlPushbuttonDefaultTag, sizeof( boolean ), bool )



PREFERENCE FILES 

FUTUREBASIC  SWITCHING

preference files

Preference files are a necessary evil. No matter what kind of application you decide to
create, you are going to need to store some information that can be recalled each time
the program is run. The easiest way to do this is to create a preference file.

Preference files may be used to hold top scores, connection rates, font preferences, window
positions and just about anything else that you can imagine. Use the preference file to
store subtle things that ensure that the environment looks the same when it starts up as
it did when it shut down. Use it to store selections from your preference window. Use it
to store internal data. Use it as a homing device to locate the slice of pizza that you
dropped on the floorboard of your pickup.

Preference files are generally stored in a folder named Preferences which is located inside
of the System folder. I say "generally" because the folder may have a different name for
any one of a fistful of reasons: the user may have changed the name; the computer may
use a non-U.S. version of the System software; a utility may be in use (like Mac Manager)
which swaps multiple preference folders for individual users.

It is possible for you to put together all of the toolbox calls necessary to locate the proper
folder. But why bother? These routines are already built in to FutureBASIC! The steps
are simple:

1. Create a record that will hold your preferences.

2. Create an instance of that record (i.e. DIMension a variable of that record type).

3. Have your program INCLUDE the preference routines file.

4. Get the preferences from the file when your program starts up and put them back
into the file before your program shuts down.

123

SETBUTTONDATA

FUTUREBASIC  SWITCHING

The specifics for DEF SETBUTTONDATA are varied and wide ranging and allow
access to many facets of many different control types. Each control definition may
define its own internal information and provide its own methods for accessing that
data. The syntax is:

DEF SETBUTTONDATA(bRefNum&, part%, tagType&, size&, dataPtr&)

The bRefNum& is a long integer representing the regular button reference number.
The part% is an integer that tells the control definition what specific part of the control
or piece of information we would like to address.

The tagType&, size& and dataPtr& all deal with the data that you wish to set. For
instance, if you wish to set data that was held in the integer x%, the size would be 2
(because an integer takes up two bytes) and the data pointer would be @x% meaning
that FutureBASIC should use the address of x% – not the contents of x%. A more
common method, which is also more readable, is to use FutureBASIC's SIZEOF
function. You might use SIZEOF(x%) or SIZEOF(INTEGER) in a function. Sometimes
you won't really know the size of something and it's very convenient to be able to use
SIZEOF(someObscureRecord).  In our case, the value being passed is stored in a Boolean
variable.

Pop Quiz 4: How big is a Boolean variable and how would you determine its size?

buttons with icons

Buttons that include icons (and those that include pictures) require the use of resources.
To create a resource file, open ResEdit. (It's on your FutureBASIC CD) and create a
new file. We called ours Button Display.rsrc.

 

54



WRITING STYLE 
RECORDS 

FUTUREBASIC  SWITCHING

// write the handle to a file
OPEN "O",#1,"Temp Edit Field File",,SYSTEM(_aplVol)
WRITE FIELD #1,ztxtH
CLOSE #1

// erase the field and dispose of the handle
DELAY 2000
EDIT$(_mainField) = "The old data has been filed."¬

  + CHR$(13) + "Delaying for 3 seconds ",,12,0
DEF DISPOSEH(ztxtH)
DELAY 3000

// read the handle from the file
OPEN "I",#1,"Temp Edit Field File",,SYSTEM(_aplVol)
READ FIELD #1,ztxtH
CLOSE #1

// replace the contents of the field
EDIT$(_mainField) = &ztxtH

// throw away the test file
KILL "Temp Edit Field File",SYSTEM(_aplVol)

//Event loop
DO

HANDLEEVENTS
UNTIL 0

122

RESOURCES 

FUTUREBASIC  SWITCHING

From the Resource menu, select Create New Resource.

 

The resource type that you will create is called a cicn (color icon).

 

Draw or paste an image into the cicn editor window.

 

55



WRITING STYLE 
 RECORDS 

FUTUREBASIC  SWITCHING

writing with style

The information contained in a text field — that includes both style and ASCII text
information — can be written to and read from a file. The following example creates a
field and fills it with styled text. The information is captured (see GET FIELD on page93)
and stored in a file. Then we set fire to the field and watch it rise from the ashes like the
Phoenix.

//GET FIELD
_mainWindow = 1
_mainField  = 1
DIM r AS RECT

//Build window
SETRECT(r,0,0,256,128)
APPEARANCE WINDOW _mainWindow,"Doc",@r,_kDocumentWindowClass ,¬

_kWindowStandardDocumentAttributes
DEF SETWINDOWBACKGROUND(¬

_kThemeActiveDialogBackgroundBrush,_zTrue)
EDIT MENU 2

//Build field
SETRECT(r,0,0,WINDOW(_width),WINDOW(_height))
INSETRECT(r,16,16)
EDIT FIELD -_mainField,"Original field contents:"+chr$(13),@r,_Framed
EDIT$(_mainField) ="Bold 12 " ,_sysFont,12,_boldBit%
EDIT$(_mainField,_maxInt,_maxInt) = "Italic 9 ",_sysFont, 9,_italicBit%
EDIT$(_mainField,_maxInt,_maxInt) =  "underLine ",_applFont, 9,_uLineBit%

// grab the styled text from the field
DIM ztxtH AS HANDLE
GET FIELD ztxtH,_mainField

121

RESOURCES 

FUTUREBASIC  SWITCHING

Use the cursor to drag the actual size copy from the Color areas to the B & W area.

 

Repeat this step by dragging the same color image all the way down to the Mask area.

 

56



FUTUREBASIC  SWITCHING

/*
No employees yet? This is a new file. Let's write out
the heading data as the first employee.

*/
LONG IF gNumberOfEmployees = 0

gCurrentEmployee.name    = "Name"
gCurrentEmployee.address = "Address"
gCurrentEmployee.city    = "City"
gCurrentEmployee.state   = "ST"
gCurrentEmployee.zip     = "Zip Code"
gCurrentEmployee.age     = _"AGE"
gCurrentEmployee.salary  = "Salary"

/*
Writing a record is pretty simple.
Look, Ma, no hands!

*/
WRITE #1, gCurrentEmployee
END IF
/*

That's enough for now.
*/
CLOSE #1

in a nut shell

It is often helpful to persons of limited mental capacity such as myself, to see an entire,
bubbling, frothing, example reduced to a few succinct lines. Here is the meat of the last
program:

DEF OPEN "TEXTkre8"
gAppFolderRef = SYSTEM(_aplVol)
FN FBMakeFSSpec(gAppFolderRef,0,"Employee File", gEmployeeFileSpec)
OPEN "N",#_employeefileNum,@
gEmployeeFileSpec,SIZEOF(gCurrentEmployee)
WRITE #1,gCurrentEmployee
CLOSE #1

120

RECORDS IN FILES RESOURCES 

FUTUREBASIC  SWITCHING

From the Resource menu select Get Resource Info and change the resource ID to 256. It
is a good policy to make this type of resource purgeable too, so check the appropriate
box.

 

Save your file and Quit ResEdit.

If you were to look back to the beginning of the previous listing, you would see the
following line:

RESOURCES "Button Display.rsrc" // this holds a picture and an icon

This tells FutureBASIC to load all of the resources in the file named Button Display.rsrc
and to make them a permanent part of the application. When our code needs a particular
resource, it is pulled from the disk and loaded into memory. When memory is needed
for other things, the resource is purged and memory is once again free for other tasks.
Resources are very smart little fellows.

One of the things that you will learn about buttons created with the Appearance Manager
is that parameters may be mixed and matched as required by any particular control
definition. It is not possible to give details on every single type of control that Apple
creates because this document would probably be obsolete before it went to press. The
list of possible controls is not a static thing and it changes as the system evolves. If you
want to keep in touch with the newest items on Apple's list, visit
http://developer.apple.com/techpubs/index.html to see a list of documents available
on anything and everything that comes from Apple.

57



RECORDS IN FILES 

FUTUREBASIC  SWITCHING

/*
I set these up as globals, even though they could
be recalculated from other origins as needed. This
is just for convenience.

*/
DIM gAppFolderRef AS WORD
DIM gNumberOfEmployees AS LONG
DIM gEmployeeFileSpec  AS FSSpec
/*

Why bother to set up an ENUM structure for only
one file? Because, in all likelihood, you are going
to end up working with more than one file. This makes
things easy since you just add the new file reference
constant to the ENUMerated list.

*/
BEGIN ENUM 1

_employeefileNum
END ENUM
END GLOBALS

/*
The following lines open the employee data file.
If the file does not exist, it is created.

*/
DEF OPEN "TEXTKRE8"
gAppFolderRef = SYSTEM(_aplVol)
FN FBMakeFSSpec(gAppFolderRef,0,"Employee File", gEmployeeFileSpec)
OPEN "N",#_employeefileNum,@ gEmployeeFileSpec,SIZEOF(gCurrentEmployee)
/*

This code check to see how many employees are
on file.

*/
gNumberOfEmployees = LOF(_employeefileNum,SIZEOF(gCurrentEmployee))

119

BUTTONS WITH 
ICONS

FUTUREBASIC  SWITCHING

The source code fragment that brought us the first icon garnished button looked like
this:

// max value is cicn ID
id ++
OFFSETRECT(r, 0, _btnHt_btnMargin)
r.bottom += _btnHt
APPEARANCE BUTTON id, _active, 0, 0, 256,  ¬

"_kControlPushButRightIconProc", …
@r, _kControlPushButRightIconProc

The REM at the top serves as a reminder that the max value for the control is interpreted
by this particular control definition as the ID number of the color icon.  We also had to
make an adjustment on the height of this button because the icon is taller than a standard
line of text. Had we tried to squeeze the icon into the standard height button, things
might have gotten ugly. The result is a rather clean looking control like the one in the
following illustration.

 

By making a simple change in the type constant (i.e. setting the type to
_kControlPushButLeftIconProc), we can move the icon from the right to the left.

 

buttons with pictures

Before we become too deeply involved in picture buttons, you should know that
FutureBASIC offers a more powerful alternative know as a PICTURE FIELD. Picture
fields are a bit easier to use and a bit more versatile than their toolbox control counter
parts, but it doesn't hurt to briefly examine the items built into the operating system.

58



RECORDS IN FILES 

FUTUREBASIC  SWITCHING

Though I have generally provided comments before or after a program listing, I have
decided to intersperse the comments in the code via REMarks for the next program.
Take a moment to look at what was done and why it was done that way.

BEGIN GLOBALS
/*

Build a template for an employee record.
Technically, this is not a global and does
not occupy any space in RAM. Still, it is
placed with the globals because that just
makes it easy to find.

*/
BEGIN RECORD employeeRecord

DIM name AS STR63
DIM address AS STR63
DIM 63 city$
DIM 3 state$
DIM 11 zip$
DIM age AS INT
DIM salary AS STR15

END RECORD
/*

Only one employee record is actually dimensioned.
There may be a need to dimension two for the
purpose of comparison. You may even wish to dim
an entire array of employees, read them all into
memory, then write out changes to the disk as
they are made.

*/
DIM gCurrentEmployee AS employeeRecord

118

BUTTONS 
WITH PICTURES 

FUTUREBASIC  SWITCHING

We invested several lines of code into the picture button.  The relevant part of the listing
is repeated below.

h = FN GETPICTURE(256)
LONG IF h

id ++ : OFFSETRECT(r, 0, _btnHt_btnMargin_btnHt_btnMargin)
pR;8 = @h..picFrame%
OFFSETRECT(pR, -pR.left, -pR.top) // picture may not start at 0, 0
OFFSETRECT(pR, r.left, r.top) // offset to next button position
OFFSETRECT(pR, 60, 0) // center horizantly. in window
APPEARANCE BUTTON id, _active, 256, 0, 1, ¬

"_kControlPictureProc", ¬
@pR, _kControlPictureProc

END IF

The picture, like the icon in the previous example, is stored as a resource in the resource
file. The resource ID in our example is 256 and the resource type is PICT. The first duty
of the code is to locate the resource so that it can determine how large the picture will be
when it is displayed. We do this by extracting a rectangle from the handle with is offset
_picFrame bytes into the structure. We will not cover the complexities of extracting
information from handles. Just take this line as it is and trust us to have gotten it right.

After the rectangle is pulled from the picture resource, it is placed in a rectangle named
pR. Since pictures are not guaranteed to start at coordinates 0,0, we must offset the
frame so that we know where we are starting from.  We must offset it again to move it
down to the place where our next button is scheduled to appear. It is offset a third time
to move it horizontally to the center of the window. In fact, we offset it so many times,
it's probably due for an oil change.

When all of the offsetting and sniffing is complete, we are finally able to create the
picture button. The actual APPEARANCE BUTTON statement is no different from
previous ones. If you look closely at the code, you will find that the max value for the
control is once again the ID for the picture resource.

59

 



SIZEOF 

FUTUREBASIC  SWITCHING

There are a bunch (it would have sounded more sophisticated if I had used the term
"plethora") of tools that help with the management of random access files. The first is the
way in which we open the file. I'll use OPEN "N" in the following examples, but OPEN
"R" will work fine if the file is not being shared by multiple users.

OPEN "N", #_employeefileNum ,@ employeeFileSpec ,SIZEOF(employeeRecord)

Note the use of the SIZEOF function to determine how big each record will be.
FutureBASIC will store this value internally for the entire time that this file is open. If we
ask to move to record 23, the runtime will know that the record is 23 times the size of an
employee file record into the file and will move the pointer to the proper location. It also
gives us the ability to ask the runtime how many records are in the file. This is
accomplished with the LOF (Length Of File) statement.

gNumberOfEmployees = LOF(_employeefileNum)

When the file is first created, the number of employees will be zero. One of the things
that is common among database developers is to write the first record so that it holds
the titles of each field. This only works for string data, but can be adapted for numeric
data as well. Given this set of designators as our first goal, the code that achieves this
might look like the following.

LONG IF gNumberOfEmployees = 0
gCurrentEmployee.name    = "Name"
gCurrentEmployee.address = "Address"
gCurrentEmployee.city    = "City"
gCurrentEmployee.state   = "ST"
gCurrentEmployee.zip     = "Zip Code"
gCurrentEmployee.age     = _"AGE"
gCurrentEmployee.salary  = "Salary"

END IF

The employee's age is stored as an integer and it is not possible to store a string as an
integer… or is it? This fragment converts the ASCII characters A-G-E into a number so
that it can be stored in the available integer. It can be converted back using MKI$(
gCurrentEmployee.age).

One of the advantages to using this format for the zeroth record is that you can easily
build a heading for columnar list. It is also great for exporting all or part of the database
to a text file that can be used by other applications.

117

RADIO BUTTONS

embedding is a three step process

Step 1 Create the parent button (super control).

Step 2 Create the button (or buttons) that will be 

embedded into the parent.

Step 3 Use DEF EMBEDBUTTON to tell FutureBASIC 

to do the embedding.

FUTUREBASIC  SWITCHING

radio buttons

In days past, we would create radio buttons independantly. Each of these buttons
acted without regard to others in its group. The weight of maintenance fell on the
shoulders of the programmer. If one radio button was clicked, all others had to be
'unclicked.' The process usually involved setting up some type of watch dog function
that would properly handle a set of radio buttons whether it was ensuring that a single
button was marked or finding out which button in the group had been picked by the
user. And I haven't even mentioned the fact that you had to make sure the correct
button, and only the correct button, was properly clicked on during initialization.

This has all changed. Now a rectangular shell is created and individual radio buttons
are embeddeded into this shell. The process of embedding is an important one and
offers significant advantages. The first plus is that taking action on a super control
(that's the name given to the outer shell) affects all of the embedded buttons. If you
hide the super control, all embedded controls are hidden. If you disable it, all are disabled.
If you take it for ice cream, you better have enough cash to feed the whole crew.

The following fully functioning program
creates and maintains two radio buttons. The
parent control uses a constant for the button
r e f e r e n c e  n u m b e r  n a m e d
_theSuperControl. The two radio buttons are
referred to with the constants _RadioBtnOne
and _RadioBtnTwo and are embedded
immediately after being built. The dialog

routine determines what button is active by extracting the value of the super control.
This example gives the super control a reference number of 100 and the embedded
radio buttons are built as 1 and 2. This makes the answer a bit more logical when we
ask which button is currently selected. We could have used any numbers for any of
these controls so long as they remained in the range of 1 to 2,147,483,647.

60



WRITING FLOATS

FUTUREBASIC  SWITCHING

a side trip through floating point disk writes

There are many different types of formats used for the storage and display of floating
point numbers. In the earlier days of FutureBASIC II (and Zbasic) we used BCD (Binary
Coded Decimal) numbers. These were very accurate (up to 2048 digits!) but were
slow. Then came 680x0 Macs with on-board math packages and the world started to
switch to SANE (Symbolic Apple Numeric Environment) math. Eventually, the PPC
machines elbowed their way on to our desktops and PPC math became the rage.

So what's the problem? Every one of these math packages uses a different format for
storing floating point data. If you wrote a file using FutureBASIC II to place a floating
point number into a disk file, you would not be able to read it with the latest version of
FutureBASIC. It gets worse. If you write a program that prints a floating point variable
to the disk in FutureBASIC and run it on a PPC machine, it will save a PPC math
version of the float. If you run the same program on a 680x0 machine and attempt to
read the same file, it will not work. That's because the two different microprocessors
use two different floating point math formats. Bummer!

The only real way to deal with floats is to write and read them as ASCII text. This
provides a guarantee that the number is going to work no matter what. Two simple
statements handle the conversion and have been present in every edition of BASIC
that I have ever used.

MyFloat# = VAL(a$)
A$ = STR$(MyFloat#)

It is for this reason that I dimensioned that employee's salary as a string and not a float.

the randomness of access

You may have noticed that I dimensioned only one employee variable. This seems
crazy. The company has 200 employees. How in the world will I manage them with a
single employee record? The answer is that we do not bring the full employee list into
memory; it's left on the disk. We load and store single records as appropriate.

116

RADIO BUTTONS 

FUTUREBASIC  SWITCHING

DIM r AS RECT
_theSuperControl = 100
_RadioBtnOne  = 1
_RadioBtnTwo = 2
// create a window
SETRECT(r,0,0,96,120)
APPEARANCE WINDOW 1,,@r
// the super control
INSETRECT(r,8,8)
APPEARANCE BUTTON _theSuperControl,_activeBtn,0,0,1,"",¬

@r,_kControlRadioGroupProc
//the first radio button
r.bottom = r.top + 20
APPEARANCE BUTTON _RadioBtnOne,_activeBtn,0,0,1,"Radio 1"¬

,@r,_kControlRadioButtonProc
//embed it into the shell
DEF EMBEDBUTTON(_RadioBtnOne,_theSuperControl)
//second radio button
OFFSETRECT(r,0,28)
APPEARANCE BUTTON _RadioBtnTwo,_activeBtn,0,0,1,"Radio 2",¬

@r,_kControlRadioButtonProc
DEF EMBEDBUTTON(_RadioBtnTwo,_theSuperControl)
LOCAL FN handleDialog

DIM AS LONG action,reference
action = DIALOG(0)
reference = DIALOG(action)
LONG IF action = _btnclick

MOVETO(8,100)
PRINT "Current Button ";button(_theSuperControl);

END IF
END FN
ON DIALOG FN handleDialog
DO

HANDLEEVENTS
UNTIL 0

61



WRITING RECORDS 

FUTUREBASIC  SWITCHING

writing a record

While it is possible to work with nothing but sequential access files, you can see that the
work would become tedious with large collections of data. A more reasonable method
that is used for working with repetitive pieces of information, like personnel records or
transaction records is to write an entire record to the file. This is one of the building
blocks that we will use to build a random access file. But our first step will be to learn the
syntax of sending a full record to the disk. Assume the following personnel record:

BEGIN RECORD employeeRecord
DIM name AS STR63
DIM address AS STR63
DIM 63 city
DIM 3 state$
DIM 11 zip$
DIM age AS INT
DIM salary AS STR15

END RECORD

DIM gCurrentEmployee AS employeeRecord

a side trip through string land

Apple recognizes four, predefined Pascal string types:

DIM a AS STR15
DIM a AS STR31
DIM a AS STR63
DIM a AS STR255

A STR15 variable is one that holds 15 characters plus a length byte, so it occupies 16
bytes of ram. Similarly, STR63 represents 63 ASCII characters plus the length byte so it
occupies 64 bytes of RAMestate. If we need something other than this predefined set,
we can prefix a string with a byte count which will represent the number of available
bytes. An additional length byte is always added.

That means that our DIM 3 state$ statement will actually take up four bytes in memory.

115

BUTTON GROUPS

FUTUREBASIC  SWITCHING

 

grouping and framing

Now that we know button chicks can be grouped under the wing of a single mother
hen, we have the tools necessary for doing some very impressive pieces of coding.
This section will investigate some limited aspects of grouping, enabling, and hiding
buttons.

There are many ways to gather buttons together in a way that associates them with
one another. In the previous section on radio buttons, we created a super control that
had functionality, but no physical representation on the screen. This is not always
sufficient. The next example will group check boxes together in a way that shows the
association of the objects.

DIM r AS RECT
_theSuperControl  = 100
_BoldCheckBox  = 1
_ItalicCheckBox  = 2
_UnderLineCheckBox = 3

// create a window
SETRECT(r,0,0,170,130)
APPEARANCE WINDOW 1,"Groups",@r,_kDocumentWindowClass
DEF SETWINDOWBACKGROUND( ¬

_kThemeActiveDialogBackgroundBrush ,_zTrue)

// the super control
inSETRECT(r,8,8)
APPEARANCE BUTTON _theSuperControl,_activeBtn,0,0,1,  ¬

"Style",@r, _kControlGroupBoxTextTitleProc

62



WRITING FILES

FUTUREBASIC  SWITCHING

writing, then reading a simple sequential file

A sequential file has to be written (and read) in order from beginning to end. The next
listing demonstrates how to write a sequential file using simple print statements.

DIM AppFolderRef AS WORD
DIM dataFileSpec AS FSSpec
DIM a$

AppFolderRef = SYSTEM(_aplVol)
LONG IF FN FBMakeFSSpec(AppFolderRef,0,"Data File",¬

dataFileSpec) = _noErr

// create the fiel and write data
OPEN "O",#1,@dataFileSpec
PRINT #1, "One"
PRINT #1, "Two"
PRINT #1, "Three"
PRINT #1, "Four"
PRINT #1, "Five"
CLOSE #1

// open the file and read data
OPEN "I",#1,@dataFileSpec
READ #1, a$ // a$ now equals "One"
READ #1, a$ // a$ now equals "Two"
READ #1, a$ // a$ now equals "Three"
READ #1, a$ // a$ now equals "Four"
READ #1, a$ // a$ now equals "Five"
CLOSE #1

END IF

114

BUTTON GROUPS 

FUTUREBASIC  SWITCHING

//Bold check box
r.bottom = r.top + 20
OFFSETRECT(r,0,28)
INSETRECT(r,8,0)
APPEARANCE BUTTON _BoldCheckBox,_activeBtn,0,0,1,"Bold"¬

,@r,_kControlCheckBoxProc
DEF EMBEDBUTTON(_BoldCheckBox,_theSuperControl)

//Italic check box
OFFSETRECT(r,0,28)
APPEARANCE BUTTON _ItalicCheckBox,_activeBtn,0,0,1,"Italic",¬

@r,_kControlCheckBoxProc
DEF EMBEDBUTTON(_ItalicCheckBox,_theSuperControl)

//Underline check box
OFFSETRECT(r,0,28)
APPEARANCE BUTTON _UnderLineCheckBox,_activeBtn,0,0,1,"Underline",¬

@r,_kControlCheckBoxProc
DEF EMBEDBUTTON(_UnderLineCheckBox,_theSuperControl
LOCAL FN handleDialog

DIM AS LONG action,reference
action = DIALOG(0)
reference = DIALOG(action)
LONG IF action = _btnclick
END IF

END FN

ON DIALOG FN handleDialog

DO
HANDLEEVENTS

UNTIL 0

63



READING FILES 

FUTUREBASIC  SWITCHING

The syntax is specific and requires some study.

OPEN "method" fileID, @FSSpec , optionalRecordLength

parameter description
method The method can be extracted from one of the tables above.

fileID The fileID is a positive number from 1 to 255. You may reuse a file
ID number after the file has been closed, so that leaves a limit of
256 files that may be open at one time.

FileSpec The FileSpec parameter should be familiar to you now.

record length The optional record length parameter is used for OPEN "R" and
OPEN "N" files. After specifying the size of a record, you may
access a record by number and FutureBASIC will handle the
underlying operations required to correctly position the file pointer.

reading supporting program data

Let's learn from some real world examples. The following code opens a sequentially
read data file that lives in the same folder as the application. This one is opened for
reading only and may not be written to. It is a logical way to open a data file that was
created by your application.

DIM AppFolderRef AS WORD
DIM dataFileSpec AS FSSpec
AppFolderRef = SYSTEM(_aplVol)
LONG IF FN FBMakeFSSpec(AppFolderRef,0,"Data File",dataFileSpec) = _noErr

OPEN "I",#1,@dataFileSpec
CLOSE #1

END IF

If you attempt to run this code fragment, it will not execute unless a file named "Data
File" is present in your application folder.

113

WINDOWS

FUTUREBASIC  SWITCHING

 

summary

This portion of the text has touched on some of the basics involved in placing buttons in
a window. A section in the Reference Manual named Appearance Buttons will provide
additional information. We will also spend more time investigating buttons later in this
manual. The important thing at this point is that you understand the basics. It is also
important that you never drink beer in church unless you cover the can with a small
paper sack, but that is a topic for another day.

64



OPENING FILES

FUTUREBASIC  SWITCHING

grand opening

Now that we know how to locate a file, the next step is to figure out how to open it.
There are several variations of the OPEN statement. Each one sets up the file to be
handled in a certain way.

method description
OPEN "O" Open for output. This erases any old version of the file (if it exists)

and replaces it with what you are about to write.

OPEN "I" Open for input. This tells FutureBASIC that you are about to read
from (but will not write to) a file.

OPEN "R" Open for random access. Both reading and writing are allowed. In
the case of random access files, a record size is generally established
at this point. OPEN "R" creates the file if it does not exist.

OPEN "N" Open for network access. This is a random access file that allows
both reading and writing. The added advantage is that more than
one application can read from or write to the file. OPEN "N" creates
the file if it does not exist.

The following table shows how OPEN statements are matched. Later, we will see
how the actual read and write commands that read and write must be matched.

write read comments
OPEN "O" OPEN "I" Sequential Access
OPEN "R" OPEN "R" Random Access
OPEN "N" OPEN "N" Network Access

112

MENUS 

FUTUREBASIC  SWITCHING

MENUS

There is more to building a menu than just listing some words in a column. For instance,
a menu is usually either composed of a list of verbs (Open, Close, Print) or a list of
adjectives (Plain, Bold, Italic). Items are grouped in a way that makes them easy to recall
and access.

The can find an article titled "Design Notes - Menus" at:
http://stazsoftware.com/carbon/aqua2.php

There are many rules covered in that internet article that make it required reading. One
important item involves menu command key equivalents that are reserved by Apple.
Other issues involve the name of your application which affects the menu bar in
Mac OS X. If you don't log on and read that article right now, I'll forgive you.  But as
soon as you turn your back on me, I'm going to steal some of your chips.

There are two generally accepted methods of building a menu. One is to create a resource
that contains the menu information. These reseources are referenced by placing their id
numbers into an 'MBAR' resource. The second is to build the menus programmatically.
We will touch upon the first path, but invest the majority of our time in the second path
since it is generally a more familiar mechanism. It makes no difference to the computer
which path you take - the menus will look and act the same.

65



APPLICATION  
FOLDER  

FUTUREBASIC  SWITCHING

FutureBASIC uses the SYSTEM function to return a value for the application folder's
reference number.

AppFolderRef = SYSTEM(_aplVol)

You may use this in conjunction with a known file name to create a FileSpec record.
Let's consider how this would look if the file that we were attempting to access were
named Data File.

DIM err AS WORD
DIM AppFolderRef AS WORD
DIM dataFileSpec AS FSSpec
AppFolderRef = SYSTEM(_aplVol)
err = FN FBMakeFSSpec(AppFolderRef,0,"Data File",dataFileSpec)
REM we now have a valid FileSpec record

If everything goes well, FN FBMakeFSSPec will return a result code of _noErr and you
can open the file to extract data.

Now, let's create a data folder that is visible from the deck of your application. The
variable named dataFolderRef will be used later to access this location. The folder will
be named Data Folder. If it already exists, FutureBASIC will just return the correct
reference number. If it does not exist, it will be created and then the reference number
will be returned.

DIM dataFolderRef AS WORD
dataFolderRef = FOLDER("Data Folder",SYSTEM(_aplVol))
err = FN FBMakeFSSpec(dataFolderRef,0,"Data File",dataFileSpec)

111

RESOURCE MENUS

FUTUREBASIC  SWITCHING

resource menus

Our screen shots and text will demonstrate work with ResEdit, which is available on
your FutureBASIC CD. Resourcerer is a better tool for the job, but is not free and
therefore not necessarily on everybody's hard drive. So fire up ResEdit and sing along.
Create a file named My Res File.rsrc.

You will be greeted with a new blank window.

From the Resource menu, select Create New Resource.

66



FILE SPEC RECORD
CREATION

FUTUREBASIC  SWITCHING

One of the features of FILES$ in this context is that you may limit the types of files that
may be opened. The next listing shows how this is done. The first FILES$ statement
allows the selection of text fields and nothing else. The second one shows several different
picture file formats. See how the four character designators are clumped together without
any type of dividers. FutureBASIC knows that each of these must be four characters
long and correctly parses each one in the process of setting up the dialog. So the confusing
"PICTTIFFGIFFJPEG" is really used to open PICT, TIFF, GIFF, and JPEG graphic files.

DIM myFSSpec AS FSSpec
DIM fName$

fName$ = FILES$(_FSSpecOpen,"TEXT" ,, myFSSpec)
fName$ = FILES$(_FSSpecOpenPreview,"PICTTIFFGIFFJPEG" ,, myFSSpec)

DO
HANDLEEVENTS

UNTIL 0

There were other modifications to the FILES$ call. The third parameter, previously
used for a prompt string, is ignored by the current Location Manager. (That's what
Apple called the manager that handles all of this stuff.) The final parameter is the familiar
FileSpec record.

building your own FileSpec record from scratch

There are only two locations that you can count on when searching for a file: your
application's folder and different locations in the System folder. If you plan on accessing
data that is stored outside of your application, you will either need to store it in one of
these two areas or ask the user to locate it using the FILES$ function.

According to this week's rules from Apple, data should only be read from files in your
application's folder and should only be written to files in the preferences folder. Without
commenting on the lack of cleverness required for blindly accepting such an edict, I
will attempt to provide the information needed to follow these rules. We will handle
opening files from the Preference folder in another section as preference files are generally
used for more specific purposes and are handled differently.

110

RESOURCE MENUS 

FUTUREBASIC  SWITCHING

When the dialog appears, you may select MENU from the scrolling list, or you may
type in the word MENU.

Two windows will now appear. One holds a graphic list of all menus in the resource
file. At the moment, its contents are a rather sparse collection of a single empty menu.
The second window is the place where the work will be accomplished.

67



FILES$ 

FUTUREBASIC  SWITCHING

The following illustrations show the dialog box generated from the same statement. But
one is from Mac OS X and the other from Mac OS 9.

 
_FSSpecOpenPreview in Mac OS 9

 
_FSSpecOpenPreview in Mac OS X

109

RESOURCE MENUS 

FUTUREBASIC  SWITCHING

Begin by entering a title. We'll create a File menu, so the title is File. Menu items are
entered by pressing return. Each time you press return, you'll get a new blank item
that is ready to fill in.

The name goes in the Text: area. Command key equivalents may be entered in the
Cmd-Key: field. For now, we will avoid submenus because it's not time for that added
complexity. We will avoid colorizing the menus or items because Apple's HIG (Human
Interface Guidelines) police will cart you away in a binary bucket and I'll be left shaking
my head and talking about what a nice person you were.

If you were paying close attention, you might have noticed that the MENU ID was
automatically set to 128 by ResEdit. FutureBASIC expects resource ID numbers for
menus to be in the range of 1 to 31 for menu bar items. So after you have fluffed and
tickled your menu into the proper order, close the menu editor window, move to the
Resource menu and select Get Resource Info.

68



FILES$

FUTUREBASIC  SWITCHING

DIM myFSSpec AS FSSpec
DIM fName$
fName$ = FILES$(_FSSpecSave,"Save this file as…","untitled",  ¬

myFSSpec)
LONG IF LEN(fName$)

PRINT "The vRef is"myFSSpec.vRefNum
PRINT "The parent ID is"myFSSpec.parID
PRINT "The file name is "myFSSpec.name
PRINT "fName$ = "fName$

XELSE
PRINT "Cancel button was hit."

END IF

DO
HANDLEEVENTS

UNTIL 0

using FILES$ to provide information for an existing file

The same FILE$ keyword is also used for locating an existing file. In this case, the
parameters differ slightly. There are two selectors available: _FSSpecOpen and
_FSSpecOpenPreview. _FSSpecOpenPreview has no affect on the dialog in Mac OS X.
In Mac OS 9, it provides a Show Preview button, but does not actually show the preview
unless the user clicks the button.

108

RESOURCE MENUS 

FUTUREBASIC  SWITCHING

In the dialog that follows, set the MENU ID to 1. You may optionally add a resource
name at this point. None of the check boxes at the bottom will be checked. This is
different from the vast majority of resources which will, as a rule, have the Purgeable
box checked. MENU resources are never purgeable.

 

When the window is closed, you will be warned that the resource ID and the MENU
ID do not match. What's up with that?

A resource ID is something that is held in a file and brought into memory by the resource
manager. All resources have ID numbers for identification. A MENU ID is a number
that is stored inside of the resource. ResEdit was warning us that the internal ID held for
the Menu Manager and the External ID used by the Resource Manager did not match.
We want this fixed, so the correct thing to do is to press the OK button.

One popular menu that appears in almost every applicaiton ever created is the Apple
menu. This is a special menu that has an ID of 127. You need to add only the "about"
items to this menu. Additional lines will be added when FutureBASIC initializes your
application at start up. These items will include things from the Apple Menu when
running in Mac OS 9.  Mac OS X will display the item in the Application menu.

69



FILE SPEC
RECORDS 

FUTUREBASIC  SWITCHING

To create a FileSpec, we use a dimension statement.

DIM myFSSpec AS FSSpec

No matter where a file lives (or is about to be created) it can be pinpointed with a
FileSpec record. This record lays out the name of the file, the ID of the folder in which it
resides, and the color of its toenails. All of our activities will depend upon building and
maintaining a good FileSpec record.

using FILES$ to provide information for a new file

FutureBASIC uses the keyword FILES$ for a wide variety of links to the file locations
dialogs provided by Apple. The parameters for this statement may vary depending on
the selector used as the first parameter. In this particular instance, we will use _FSSpecSave
to indicate that we wish to save a file. If a file with that name already exists, we will be
warned that we are about to overwrite it.

To simplify things, let's compare the FILE$ statement to the dialog that it produces.

fName$ = FILES$(_FSSpecSave,"Save this file as…","untitled", myFSSpec)

 
Notice where the assigned text shows up in the dialog and how we are able to control
the default file name. Listing 18 shows how information can be gleaned from the file
dialog box.

107

RESOURCE MENUS 

FUTUREBASIC  SWITCHING

The folks that built ResEdit (clever ducks that they are) put a radio button in the new
menu window that allows you to select (Apple Menu) as a menu title. After clicking
the button, hit return and enter the name for your "About" item. Next, follow the same
steps as those laid out for the File menu and change the MENU ID to 127.

making a list

We now have two menus. It's time to tell FutureBASIC what menus are needed and
what order we want them to assume. This is accomplished with the MBAR (Menu
BAR) resource. The ID of this resource must be 127.

If you were paying close
attention, you might already
know what to do. Create a new
resource, make the type MBAR,
and ensure that it has a resource
ID of 127. (The 127 is an FB
requirement.) The finished
MBAR resource will look like the
following:

There is a bit of a trick when dealing with resource lists in ResEdit. When the MBAR
editor window is first opened, there are no items listed. There is only a line telling you
that the number of items is zero and that the first items looks like "1) ****". To make
things work, you must first click on the 1) ****, then select Insert New Field(s) from the
Resource menu. Click in the new field and type the appropriate ID number.

Did you remember to change the MBAR resource ID?

70



FILE TYPES
FILE SPEC RECORDS

FUTUREBASIC  SWITCHING

The file type is another four character designator. The most common is probably TEXT
for text files. There are also PICT files which contain pictures. TIFF (Tagged Image File
format) files also contain pictures in a special compressed format. Try using Resourcerer
or ResEdit to view the different file types and creator types of some popular applications.

The purpose of this rather verbose description is two-fold.

First fold: You now have some understanding as to how the Macintosh Finder works.
It matches the file type and creator info on a double-clicked file to its internal database
and then matches the file to the application that created it.

Second fold: I'm getting paid by the word.

The syntax is simple:

DEF OPEN "ffffcccc"

You will substitute your file type for the "ffff" and your creator for "cccc". If you had a
generic application that read text data, you might use the following:

DEF OPEN "TEXT????"

file specification record

I used to marvel at the raw power of a 143 Kilobyte, 5 1/4” floppy disk. How could
they cram all of that stuff into such a small space? Now I spend my time trying to
figure out where I put the thirty-seventh version of a project on one of the many multi-
gigabyte partitions of my system. It’s not hard to see that we need some very specific
methodologies for locating files. This is where the FileSpec record comes into play. A
FileSpec record is defined in the runtime as…

BEGIN RECORD FSSpec
DIM vRefNum AS SHORT
DIM parID AS LONG
DIM name AS STR63

END RECORD

106

RESOURCE MENUS 

FUTUREBASIC  SWITCHING

The next step is to enter the following program:

RESOURCES "My Res File.rsrc"

DO
HANDLEEVENTS

UNTIL 0

Run the program. You will be rewarded with an operational set of
menus.

FutureBASIC has the ability to create an additional special menu that works with almost
no support from your program, it is the Edit menu. Our programming effort involves
nothing more than using the EDIT MENU statement and assigning an ID number to
the menu.

RESOURCES "My Res File.rsrc"

EDIT MENU 2

DO
HANDLEEVENTS

UNTIL 0

The result is a minimal, but fully functional Edit menu.

71



FILES 

FUTUREBASIC  SWITCHING

FILES

There are many types of files:  resource files, data files, preference files, nail files, hanging
files. We’ll start with data files because they are the most common. When we speak of a
data file in Macdom, we are referring not only to the contents of that file, but to the fact
that we are attempting to access the data fork of the file.

Alternatively, we could be looking at the resource fork. Both the resource fork and data
fork can be part of the same file. The data side of the coin is arranged in a format established
by the programmer. The resource side is handled by the Resource Manager and generally
uses preset data types for storing information. Examples of these preset types would
include pictures (PICT), icons (ICON), alerts (ALRT), lists of strings (STR#), and more.

preparations

Before we can build a file, we need to send some information to the runtime. We need
to tell it what the file type and creator will be for the next file that is created. The runtime
will store this information until it is ready to create a new file. The creator is a four
character code that goes with your application. it should be unique in all of Macdom.
This is needed for your applicaiton to properly run under Mac OS 9. Some examples of
creator types are:

Nisus NISI
SimpleText ttxt
Quicken INTU
Photoshop 8BIM
FB Editor FB^e

Notice that you do not need to confine yourself to alpha characters. You do not need to
stick with capital letters. The only caveat that Apple makes is that the creator may not be
composed solely of lower case letters. This is reserved for Apple products. Notice that
Apple's SimpleText is created of only lower characters.

There are times when you don't really care if your application has a unique creator. For
instance, you may have a generic text reader or picture viewer. If this is the case, use ????
as the creator. If desired, you can contact apple to register your 4-character designator.

105

CODED MENUS 

FUTUREBASIC  SWITCHING

forget resources

All of this could have been done programmatically. We would not have had to visit
ResEdit and would not have had to switch back and forth between the FutureBASIC
editor and another program. The next listing shows how this entire program could
have been accomplished with source code.

APPLE MENU "About My Program"
MENU 1,0,1,"File"
MENU 1,1,1,"New/N;Open/O;Close/W;-"
MENU 1,5,1,"Save/S;Save As…;-"
MENU 1,8,1,"Page Setup;Print…/P;-;Quit/Q"
EDIT MENU 2

DO
HANDLEEVENTS

UNTIL 0

so which one do i want?

The results are the same. If you put the menus created from a resource file and the
menus created programmitacally side by side, you wouldn't be able to find a hair's
difference — even if you were using a microscope and tweezers. So what difference
does it make? A lot… And not much… You decide.

Resource menus can be edited after a program has been compiled. This is an important
difference because your application cannot be easily localized (translated to another
language) when the menus are built by the program instead of a resource editor. My
first retort for this argument was that I did not intend to have a program translated; it
was built by an American for Americans. (I can see all of the Europeans that are reading
this book nod their heads and say, "That is soooooo American.")

I got an email years ago from a Japanese FutureBASIC user who wanted to take an
application that I had written and translate it to Japanese. I was flattered at first. Then I
became worried. Did I do everything right? Would it be easy for him to make the
changes?

Pop Quiz 5: What preference can you set in FutureBASIC to make localization of your
program's embedded text possible? You get 10 points and a bean burrito if you know
the answer to this one.

72



PRINTER DIALOGS

FUTUREBASIC  SWITCHING

Pop Quiz 7: How could you tell if a printer is set to landscape or portrait just from the
information obtained this far?

Back to the code… Once the paper window has been opened, the code calculates the
size of the printable area, then insets it by eight pixels. An edit field is created. Finally,
output is routed back to the visible screen and the paper window is ejected from the
printer and closed.

Caution: it is important that you route output to the screen (ROUTE _toScreeen) before
you use CLOSE LPRINT. Failing to do so is like cutting off a branch that you are
standing on. It's funny when it happens to Wiley Coyoty, but is less cool when your
finely tuned application crashes into the mountainside.

Caution (again): While the EDIT FIELD statement works well on the printed page,
you may not use EDIT$ to fill a field that was previously created. This is because
FutureBASIC creates a temporary field for display purposes, then immediately disposes
of that field. To do otherwise would mean that all printer-directed fields would hang
around and fill RAM to the burping point. Once the EDIT FIELD statement has finished
executing, the edit field no longer exists.

Additional commands are available for user settable printer dialogs.

DEF PAGE To ask the user to set up page information
DEF LPRINT  To ask the user for specific information about how this particular

print job will be handled (also called a Job Dialog by those in the
know).

Printing is complicated only because it deals with something that is invisible during all
phases of running and testing. You never see the results of your work until and unless
it rolls out of the printer, but the actual commands and processes involved are simple.
If you can figure out how to use this very small set of commands, you can master all
print jobs.

104

CODED MENUS 

FUTUREBASIC  SWITCHING

As the Internet wedged itself into our lives, the size of the planet began to shrink. It still
amazes me. You may be using a FutureBASIC editor that presents items in French or
Japanese or Italian… The talented people that make these changes are working with
information stored in resources. They never actually see or edit the source code that
created the program.

Now let's look at the flip side. Menus built inside of your program are much easier for
you to create and edit. They are instantly available in the source code listing as a reference
point as you work. Program menus can also be edited by a resource editor, but they
appear as an item in a STR# list and are not as easily identified by a localizer. (Oops! I
just gave the answer to Pop Quiz 5.)

advice handed down from stazdom

Find your comfort zone. Go there. Don't be afaid to change to another method when
you are ready. It's your program.

details, details, details…

We pretty much glossed over the programmatic menus. Now it's time for a look at
what makes them tick. In the process, we are going to learn about things that will be
helpful even if you build resource menus. Take the pieces that you need, leave the ones
that do not interest you.

The MENU statements that were used were somewhat cryptic. All of those numbers
seemed necessary, but hard to understand. The best thing to do here is to let FutureBASIC
build a set of constants that may be used for both the menus and the items. The method
that may prove to be the easiest to understand is to list the items with a related number
as in the following fragment.

_NewItem = 1
_OpenItem = 2
_CloseItem = 3
_SaveItem = 5
_SaveAsItem = 6
_PageSetupItem = 8
_PrintItem = 9
_QuitItem = 11

73



PRINTING

old details

ROUTE _toPrinter open the printer window

RROUTE _toScreen send information back to the visible screen

CLEAR LPRINT send all information off to the printer

CLOSE LPRINT dispose of the invisible window and send 
the final bits of information to the printer

FUTUREBASIC  SWITCHING

PRINTING

Can you imagine a word processor or desktop publishing program that was not able to
print? Paper output is part of almost every application. Heck, a program without the
ability to print is like a martini without the egg.

There are some simple rules to
follow when printing in
FutureBASIC. The first thing to
keep in mind is that
FutureBASIC works with an
invisible window that holds all
of the output until you tell it to
run off to the printer. There are
commands that open or close
that window or send its
contents off to be reproduced on
paper.

After this invisible window has been opened, standard BASIC commands may be
used to determine things like with width or height of the window, set a font, display an
edit field, and more. The fragment will send the contents of a container to the printer in
the form of an edit field that is eight pixels smaller than the printed page.

DIM r AS RECT
ROUTE _toPrinter
SETRECT(r,0,0,WINDOW(_width),WINDOW(_height))
INSETRECT(r,8,8)
EDIT FIELD _mainField,#myContainer$$,@r,_statFramed
ROUTE _toScreen   ' <--- very important!!!
CLOSE LRPRINT

The code begins by targeting the printer for output. This opens and activates the invisible
window that matches the dimensions of the printed page. More specifically, it matches
the dimensions of the printable area of the page.

103

MENU CONSTANTS

FUTUREBASIC  SWITCHING

That's logical and easy to grasp, but there is a potential problem: What if we later
decide to add an item named Open Recent? We'll have to change the numbers of each
item that follows the insertion. Here is a better, more versatile method for assigning
constants.

BEGIN ENUM 1
_NewItem
_OpenItem
_CloseItem
_-
_SaveItem
_SaveAsItem
_-
_PageSetupItem
_PrintItem
_-
_QuitItem

END ENUM

BEGIN ENUM is a powerful statement that lets you assign constants in many different
ways. Our small example used the optional starting parameter of 1 to tell FutureBASIC
that the first constant assigned should have a value of 1. The _- lines tell FutureBASIC
to skip over a number. In this case, we skipped the divider lines because they are never
selectable. There are many additional options for this statement. It's worth a trip to the
Reference Manual for particulars.

Additional constants might be allocated to menu numbers. We can do this as individual
assignments…

_FileMenu = 1
_EditMenu = 2

Or as enumerations…

BEGIN ENUM
_FileMenu
_EditMenu

END ENUM

74



COMPARE 
CONTAINERS

result indicates

negative container a < container b

zero container a = container b

positive container a > container b

FUTUREBASIC  SWITCHING

PRINT c$$
KILL "Container Data",1,SYSTEM(_aplVol)

DO
HANDLEEVENTS

UNTIL 0

You can learn more about reading and writing files starting on page 105.

Because of the inability to predetermine how much data might be held in a container,
this type of file operation is generally suited to sequential, rather than random access
files.

my container is bigger than your container

Containers may not be compared using the same
methods invoked for string and numeric
comparisons. You cannot use LONG IF c$$ < d$$.
But there is a function provided by FutureBASIC
that will take care of things for you.

result% = FN FBCOMPARECONTAINERS(a$$,b$$)

text tricks for containers

FutureBASIC has another special function related to containers. You can fill a container
with the contents of a handle or a text resource id. the syntax is demonstrated in the
following snippet.

a$$ = %resID% : REM fill container with TEXT res ID resID%
a$$ = &hndl& : REM fill container with contents of hndl&

102

APPLE MENU 
MENU CONSTANTS 

FUTUREBASIC  SWITCHING

It is not necessary to assign a value for the Apple Menu. There is a constant already
defined as _AppleMenu. Use of this constant is going to be confined to determining
which menu has been selected (more about this later) and not when the menu is built.
Construction of the Apple Menu is accomplished with the APPLE MENU statement
rather than a standard MENU statement.

APPLE MENU "About My Program"

There are a few additional constants that will be of value. These are already part of
FutureBASIC and will not need to be specified in your code. They are:

_enable
_disable
_checked

If we use the constants instead of the raw numbers in our menu statements, the code
becomes so much more readable that it is probably unnecessary to detail the parameters
of the MENU statement.

MENU _FileMenu ,0 ,_enable ,"File"
MENU _FileMenu ,_NewItem ,_enable ,"New/N;Open/O;Close/W;-"
MENU _FileMenu ,_SaveItem ,_enable ,"Save/S;Save As…;-
MENU _FileMenu ,_PageSetupItem ,_enable ,"Page Setup;Print…/P;-;Quit/Q"

75



CONTAINER + 
STRING 

FUTUREBASIC  SWITCHING

The problem is a simple one to address. When FutureBASIC sees that strings are being
used in an operation, it begins to push them onto the internal string stack with the
hopes of fitting the final results into a result string. This fails because the added strings
ended up being more than 255 characters. The solution is to use the new "+=" syntax to
add strings to containers.

DIM a$,b$
DIM c$$
a$ = STRING$(255,"A")
b$ = STRING$(255,_"B")

c$$ = a$
c$$ += b$
PRINT c$$

Note that I could have used STRING$$ to fill the container instead of combining two
Pascal strings made with STRING$, but then you would not have seen the potential
problems that can arise from combining strings and containers. Other important things
that deserve investigation are UCASE$$, LEFT$$, MID$$, and RIGHT$$.

containers and file routines

Containers can be written to or read from a file. Since the Read/Write operations actually
include the processes and data necessary to determine the length of the container's data,
you do not need to be concerned with the information.

The following example creates a container and fills it with one thousand X's. The data is
sent to the disk. Then the container is cleared and the data is read back from the disk
and printed.

DIM c$$
c$$ = STRING$(1000,_"X")

OPEN "O",#1,"Container Data",1,SYSTEM(_aplVol)
PRINT #1,c$$
CLOSE #1
c$$ = ""
OPEN "I",#1,"Container Data",1,SYSTEM(_aplVol)
INPUT #1,c$$

101

CLOSE #1

META CHARACTERS

meta
character

effect

;
When it appears by itself, ";" creates a gray dividing line. When it appears as a 
delimiter in a list (e.g., "item 1;item 2"), each of the items in the list becomes a 
separate menu item.  You can use this fact to add several new menu items with just 
a single MENU statement.

( When it appears in an item that follows a semicolon, "(" initially disables (dims) the 
item.

/ The character following "/" becomes a command key equivalent for the menu item. 
Or, if the character following "/" is CHR$(&1B), it indicates that this menu item has 
a submenu.

! When "!" appears in an item that follows a semicolon, the character following "!" is 
displayed as a mark on the left side of the menu item.

^ The number (1 through 9) following "^" is added to 256 to get an icon resource 
number. The corresponding icon is displayed on the left side of the menu item.

- This creates a gray dividing line. Any other characters in the item string are ignored.

<

The letter following "<" is interpreted as a text attribute to be applied to the menu 
item. Use one of the following letters:
B = bold
O = Outlined
U = Underlined
I = Italic
S = Shadowed

FUTUREBASIC  SWITCHING

meta characters

There are several special characters used by the Menu Manager when creating a new
menu or item.

Three of these meta characters were used to build our sample menu: the semicolon (;)
divided multiple items; the dash (-) created a dividing line; the forward slash (/)
designated the following character as a command key equivalent for the item.

76



CONTAINERS & 
STRINGS

FUTUREBASIC  SWITCHING

containers and string operations

One of the advantages of moving text from a field into a container is that you may
search the text (using INSTR) or concatenate text using LEFT$$, MID$$, and RIGHT$$.
Note the double $$ on these keywords. This indicates to FutureBASIC that we are
using containers rather than strings for these operations. Other items, like LEN and
ASC, also work well for containers.

Containers are always global. You can't dimension one in a local function. When you
dimension a container, FutureBASIC actually creates a handle which is resized every
time information is added to or removed from a container.

Because of the way that FutureBASIC handles strings, some container + string operations
may seem to go haywire when used. The most common example is that of adding
strings together to form a container.

A Pascal string can only hold 255 characters. But you can add strings together to form
containers that are much larger than that since containers handle up to two gigs of
information. It would be logical to assume that the following would work correctly.
(But it does not!)

DIM a$,b$
DIM c$$
a$ = STRING$(255,"A")
b$ = STRING$(255,_"B")

c$$ = a$ + b$
PRINT c$$

If you try to run this listing, you'll get an error message that looks like the following
alert:

100

CODED MENUS 

FUTUREBASIC  SWITCHING

The addition of constants and remarks makes the next listing longer, but infinitely more
readable.

//Assign constants for menus
BEGIN ENUM 1

_FileMenu
_EditMenu

END ENUM

BEGIN ENUM 1
_NewItem
_OpenItem
_CloseItem
_-
_SaveItem
_SaveAsItem
_-
_PageSetupItem
_PrintItem
_-
_QuitItem

END ENUM

//Build menus
APPLE MENU "About My Program"
MENU _FileMenu ,0 ,_enable ,"File"
MENU _FileMenu ,_NewItem ,_enable ,"New/N;Open/O;Close/W;-"
MENU _FileMenu ,_SaveItem ,_enable ,"Save/S;Save As…;-
MENU _FileMenu ,_PageSetupItem ,_enable ,"Page Setup;Print…/P;-;Quit/Q"
EDIT MENU _EditMenu

//Event loop
DO

HANDLEEVENTS
UNTIL 0

77



CONTAINERS  

FUTUREBASIC  SWITCHING

CONTAINERS
(OR: HOW WE FIT A #3 WASHTUB INTO FUTUREBASIC)

Containers are bit buckets. A container does not care what you put in it: integers, text,
floating point numbers, etc. A container can hold up to 2 gigabytes of information. You
can dump the contents of an entire edit field into a container. In fact, because an edit
field is limited to 32K, you can store about 6,000 full edit fields into a single container.

Containers can be written to or read from a disk file. They can be put into or extracted
from an edit field. They can be printed, combined, erased, and compared. In a pinch,
they can be used down at the milking barn on a dairy farm. The rules for container are
relatively simple. I'll outline a few of the important aspects here.

Containers may be dimensioned in two ways:

DIM myContainer AS CONTAINER
DIM myContainer$$

It doesn't matter which version is used. In either case, you may use myContainer with
no suffix after the dimension is complete or you may choose to keep the $$ in place to
help you identify the type of variable being used in your code.

containers and edit fields

When a container is used to store information from an edit field, it holds only the text
from that field. Unlike the GET FIELD command detailed in the previous section,
containers do not store style information.

To move the contents of an edit field into a container, you would use this code:

DIM c AS CONTAINER
c = EDIT$(fldRef)

You may also work in the opposite direction. This sample code moves text from a
container into an edit field.

DIM c AS CONTAINER

99

EDIT$(fldRef) = #c

MENU EVENTS 

FUTUREBASIC  SWITCHING

nice pistol. where's the trigger?

Now that we have a general overview of what is required when building menus,
you'll need to know how to intercept a menu selection. In FutureBASIC, we use the
ON MENU statement to set up a vector and the MENU function to determine what
was pressed. The relevant additions to Listing 12 would be placed before the event
loop and would look something like the following.

//Menu handlers
LOCAL FN handleMenu

DIM menuID,itemID
menuID = MENU(_menuID)
itemID = MENU(_itemID)

SELECT menuID
CASE _FileMenu

SELECT itemID
CASE _NewItem

WINDOW 1
CASE _OpenItem
CASE _CloseItem
CASE _SaveItem
CASE _SaveAsItem
CASE _PageSetupItem

DEF PAGE
CASE _PrintItem
CASE _QuitItem

END
END SELECT

CASE _AppleMenu
EEP

END SELECT

MENU
END FN

ON MENU FN handleMenu

78



ZTXT

FUTUREBASIC  SWITCHING

The following snippet shows how text may be taken from one field and placed in
another. An important piece of handling ZTXT handles is that they may also be written
to or retrieved from a disk file. See the chapter named FILES on page 105 for additional
information on this subject.

DIM ZTXThandle AS HANDLE
GET FIELD ZTXThandle,_mainField
EDIT$(_secondaryField) = &ZTXThandle

There are a thousand other things that we could consider here, but I must keep bringing
myself back to the theme of this book; that you already know how to program and
that you already know how to read the reference manual. You just need a booster
rocket to get you into orbit over FutureBASIC's syntax. We will therefore abandon this
excursion into textdom and move on to other topics.

98

MENU PREP 

FUTUREBASIC  SWITCHING

I took the time to fill in all possible responses to file menu selections in the fragment
above. This is not as complex as you might think. I just copied and pasted the list of
constants, then added the word CASE in front of each one. There are a few givens in the
code. The _PageSetupItem always brings up the print style dialog, so we call on DEF
PAGE to handle the grunt work. The _QuitItem handles our exit from the program
with a simple END statement. More complex programs may require a shut down
routine that checks for information that needs to be saved or other such last minute
things.

preparation is everything

In the olden days when I participated in track and field events, one of the things that I
did to get a jump on the competition was to watch the starter at the far end of the track.
If you paid attention, you could actually see the pistol jerk and a tiny puff of smoke
erupt when he pulled the trigger. Since the speed of light was greater than the speed of
sound, I got the "start" message sooner than those with their heads down and their ears
on full alert. What we are going to talk about in this section relates not so much to the
race that is being run, but to that infinitesimal slice of time where you watch for the user
to click the mouse in the menu bar, then prepare the menu for viewing.

When you use any good Macintosh application, you will see that there are times when
a menu item is dimmed to indicate that it cannot be selected or that its use is inappropriate
at this time. FutureBASIC has a special mechanism designed to handle that specific
need. A DIALOG event will notify  you when it is time to adjust your menus.

When the user presses a command key combination or clicks the mouse in the menu
bar, FutureBASIC freezes things long enough for you to organize your menu items. Be
brief in doing this. The user doesn't want to wait around long enough to watch a rerun
of Mr. Ed. Your event handlers can be set up as shown in the following fragment.

79



EDIT FIELD 
VARIATIONS 

FUTUREBASIC  SWITCHING

PRINT %(horizPixel,vertPixel)
Print a string or numeric expression at the horizontal and vertical
pixel postions listed. To be precise, the starting pixel is at the baseline
of a font. Depending on the font, it would probably be at the bottom
left corner of the letter "M", but would be well above the decender
for the letter "g".

getting from point a to point b

When using an edit field, we have always had the option of placing a string of text into
the field. But this has the limitation of only allowing 255 characters to be added.
FutureBASIC provides the EDIT$ statement which extends this process, but still only
allows text to be added in 255 byte chunks.

A different mechanism may be used to add larger pieces of text. You may use a container.
A container may hold more than 2 billion characters. The PRINT statement will send it
to the screen and handle text wrap at the right edge of the window, but you will find a
lot more power in placing the contents of a container into a scrollable edit field. The
pound symbol (#) handles the work and may be used with both the EDIT FIELD and
the EDIT$ statements. See the chapter named CONTAINERS on page 99 for additional
information.

EDIT$(_mainField) = #myContainer$$

Another variation, the percent sign (%), allows your program to use resources for text.
This version is smart enough to see if there is an accompanying style resource for the
text so that it might show the text with variations in font info. The number passed
should be the resource ID of a 'TEXT' resource and optionally, a matching 'styl' resource.

EDIT$(_mainField) = %myResourceID

FutureBASIC allows the contents of an entire field to be captured with a single GET
FIELD procedure. The information obtained in that manner is referred to as a ZTXT
handle. (The Z is really a hold over from the olden days when FutureBASIC was known
as ZBasic.) If you prefix a ZTXT handle with an ampersand, it will be correctly placed in
the field.

97

MENU PREP 

FUTUREBASIC  SWITCHING

LOCAL FN handleDialog
DIM action    AS LONG
DIM reference AS LONG
action = DIALOG(0)
reference = DIALOG(action)

SELECT action
CASE _preview

LONG IF reference = _premenuclick
BEEP

END IF
END SELECT

END FN

ON DIALOG FN handleDialog

This version only beeps when a menu action is about to take place. But there are real
world reasons for having such a routine. If we return to the menu handling example, it
is easy to see that the New item of the File menu opens a window. If the window is
open, the Close item should be enabled. If no window is open, the item should be
dimmed. We handle it like this:

LONG IF reference = _premenuclick
LONG IF WINDOW(-1)

MENU _FileMenu ,_CloseItem, _enable
XELSE

MENU _FileMenu ,_CloseItem, _disable
END IF

END IF

Pop Quiz 6: How would you organize the DIALOG event so that the New item in
the File menu was enabled and disabled according to the presence of WINDOW 1?

80



PRINT

FUTUREBASIC  SWITCHING

recaps are not just for tires

A short review is in order:

The EDIT FIELD statement is used to create both static and editable fields. Fields created
in this manner are automatically updated as necessary.

Static text may also be displayed using DEF LBOX, RBOX, and CBOX. These displays
are not updated automatically.

FN USETHEMEFONT will allow font settings that remain consistent across many
versions of the system software, in different languages, and on different machines.

GET FIELD provides a way to copy both the text and style information from a text
field.

EDIT$ provides a method for inserting text and style information into a field.

Ski ropes do not generally work well as dental floss.

printing isn't just for first graders

One of the disadvantages of all of the text displays that we have coverd this far is
speed. Building an edit field means a lot of behind-the-sceens work for the Mac. More
than a half dozen handles must be created and linked. Specific structures have to be
built and maintained. Sometimes a portion of the screen must be erased. Sometimes a
frame has to be built. Sometimes a focus ring must be added. There is a faster way.

The same PRINT statement that has been used by BASIC programmers for decades is
still serviceable.

PRINT Print a string or numeric expression

PRINT @(column,row)
Print a string or numeric expression at the caclulated column position
for the current font, font size, and font style. This routine assumes the
width of the character "0" (zero) when making the horizontal position
calculation.

96

MENUS 

FUTUREBASIC  SWITCHING

Before gathering all of this together in a single program listing, I did some minor clean
up work. The first was to replace the window number (1) with a constant
(_mainWindow). I also set up the Print item of the File menu so that it was enabled and
disabled according to the presence of the program's only window. Selecting Print from
the menu will bring up the Print Job Dialog, but it will not actually send anything to the
printer. (Stay tuned. We'll cover printing in the book or my name isn't Barney. Wait…
My name isn't Barney.)

// Assign constants
_mainWindow = 1

BEGIN ENUM 1
_FileMenu
_EditMenu

END ENUM

BEGIN ENUM 1
_NewItem
_OpenItem
_CloseItem
_-
_SaveItem
_SaveASItem
_-
_PageSetupItem
_PrintItem
_-
_QuitItem

END ENUM

//Build menus
APPLE MENU "About My Program"
MENU _FileMenu ,0 ,_enable ,"File"
MENU _FileMenu ,_NewItem ,_enable ,"New/N;Open/O;Close/W;-"
MENU _FileMenu ,_SaveItem ,_enable ,"Save/S;Save AS…;-
MENU _FileMenu ,_PageSetupItem ,_enable ,"Page Setup;Print…/P;-;Quit/Q"
EDIT MENU _EditMenu

81



TEXT BOXES 

FUTUREBASIC  SWITCHING

_mainWindow = 1
_mainField  = 1

DIM r AS RECT
DIM t$
DIM err AS OSERR

//Build window
SETRECT(r,0,0,256,128)
APPEARANCE WINDOW _mainWindow,"Doc",@r,_kDocumentWindowClass ,¬

kWindowStandardDocumentAttributes
DEF SETWINDOWBACKGROUND( ¬

_kThemeActiveDialogBackgroundBrush ,_zTrue)
err = FN USETHEMEFONT(_kThemeEmphasizedSystemFont,_smSystemScript)
SETRECT(r,16,16,WINDOW(_width)-16, USR FONTHEIGHT + 18)

t$ = "Left"
DEF LBOX(r,t$)
FRAMERECT(r)

OFFSETRECT(r,0,24)
t$ = "Center"
DEF CBOX(r,t$)
FRAMERECT(r)

OFFSETRECT(r,0,24)
t$ = "Right"
DEF RBOX(r,t$)
FRAMERECT(r)

//Event loop
DO

HANDLEEVENTS
UNTIL 0

95

MENUS 

FUTUREBASIC  SWITCHING

//Menu handlers
LOCAL FN handleMenu

DIM menuID,itemID
menuID = MENU(_menuID)
itemID = MENU(_itemID)

SELECT menuID
CASE _FileMenu

SELECT itemID
CASE _NewItem

WINDOW _mainWindow
CASE _OpenItem

CASE _CloseItem
WINDOW CLOSE _mainWindow

CASE _SaveItem
CASE _SaveASItem
CASE _PageSetupItem

DEF PAGE
CASE _PrintItem

DEF LPRINT
CASE _QuitItem

END
END SELECT

CASE _AppleMenu
BEEP

END select

MENU
END FN

82



TEXT BOXES 

FUTUREBASIC  SWITCHING

// erase the field
DELAY 1000 // delay to allow time for viewing
EDIT$(_mainField) = ""
DELAY 1000 // delay to allow time for viewing

// replace the contents of the field
EDIT$(_mainField) = &ztxtH

//Event loop

DO
HANDLEEVENTS

UNTIL 0

would you like a "go" box for that?

Another popular method for displaying static text involves text boxes. These are actually
created by drawing an edit field, then disposing of the edit field and leaving the text on
the screen. The advantage here is that text can be wrapped, center justified, or right
justified. The disadvantage is that these items are not self refreshing and must be updated
during window refreshes.

Three text box functions are provided by FutureBASIC: DEF LBOX, DEF CBOX, and
DEF RBOX.

The next listing shows standard text boxes against a theme background. Notice how
the text is painted on a white background. Notice also that the area painted white is not
the full size of the text box, just the area necessary to draw the actual characters. In other
words, you may not depend on one of the xBOX statements to erase a full rectangle for
you if you are replacing data that has changed. You may modify the program so that
the text backgrounds are transparent by using TEXTMODE(0).

It is also important to understand that there is no border around text created in a text
box. The example draws a rectangle that exactly matches the dimensions of the text
box. As you can see, the outermost pixels of the text are covered by the frame.

94

MENUS 

FUTUREBASIC  SWITCHING

//Dialog handlers
LOCAL FN handleDialog

DIM action AS LONG
DIM reference AS LONG
action = DIALOG(0)
reference = DIALOG(action)
SELECT action

CASE _preview
LONG IF reference = _premenuclick

LONG IF WINDOW(-_mainWindow)
MENU _FileMenu ,_CloseItem , _enable
MENU _FileMenu ,_NewItem , _disable
MENU _FileMenu ,_PrintItem , _disable

XELSE
MENU _FileMenu ,_CloseItem , _disable
MENU _FileMenu ,_NewItem , _enable
MENU _FileMenu ,_PrintItem , _enable

END IF
END IF

END SELECT
END FN

ON DIALOG FN handleDialog
ON MENU FN handleMenu
DO

HANDLEEVENTS
UNTIL 0

miles to go… deeds to do…

While it would be easy to pen an entire manual about tricks and tips for the Menu
manager, we will migrate to a new topic at this point. Our aim is to familiarize you
with FutureBASIC syntax. We'll pick up additional information of specific
managers as we go and you can always learn from Apple's documentation, the
FutureBASIC list serve, our web site, or any of the electronic publications that come
on the FutureBASIC CD.

83



STYLED TEXT 

FUTUREBASIC  SWITCHING

zorro and ZTXT

FutureBASIC uses a special type of handle for dealing with styled text that is called a
ZTXT handle. This structure has the unique ability to handle the text along with the
style record that can accompany it. ZTXT handles are derived from edit fields using the
GET FIELD statement. The following listing builds a field and fills it with styled text.
Then the ZTXT handle is extracted from the field and reinserted — just to show that it
can be done.

//GET FIELD
_mainWindow = 1
_mainField = 1
DIM r AS RECT

//Build window
SETRECT(r,0,0,256,128)
APPEARANCE WINDOW _mainWindow,"Doc",@r,_kDocumentWindowClass ,¬

_kWindowStandardDocumentAttributes
DEF SETWINDOWBACKGROUND(¬

_kThemeActiveDialogBackgroundBrush,_zTrue)
EDIT MENU 2

//Build field
SETRECT(r,0,0,WINDOW(_width),WINDOW(_height))
INSETRECT(r,16,16)
EDIT FIELD -_mainField,,@r,_Framed
EDIT$(_mainField)= ¬

"Bold 12 " ,_sysFont,12,_boldBit%
EDIT$(_mainField,_maxInt,_maxInt) = ¬

"Italic 9 ",_sysFont, 9,_italicBit%
EDIT$(_mainField,_maxInt,_maxInt) = ¬

"underLine ",_applFont, 9,_uLineBit%

// grab the styled text from the field
DIM ztxtH AS HANDLE
GET FIELD ztxtH,_mainField

93

TEXT

FUTUREBASIC  SWITCHING

TEXT

You may note that I did not title this chapter "Edit fields" though such a name would
have been received without question. Not all text is editable. Not all text that is uneditable
is static. Not all text that is static is unselectable. In other words, the presentation of text
by your program covers a lot of ground and limiting it to editable text fields would be
a disservice.

background issues

More often than not, your window will be displayed using one of the backgrounds
supported by the Appearance Manager. Without specific coding, you will be painting
your text on a white background. The next listing shows how to build a simple window
with a single edit field. We will use this code as the basis for several excursions into
textdom.

_mainWindow = 1
_mainField = 1
DIM r AS RECT
DIM t$

//Build window
SETRECT(r,0,0,256,128)
APPEARANCE WINDOW _mainWindow,"Doc",@r,_kDocumentWindowClass ,¬

_kWindowStandardDocumentAttributes
DEF SETWINDOWBACKGROUND( ¬

_kThemeActiveDialogBackgroundBrush ,_zTrue)

84



APPENDING TEXT

FUTUREBASIC  SWITCHING

//Appending Text to scrolling text fields
_mainWindow = 1
_mainField  = 1
DIM r AS RECT
DIM x

//Build window
SETRECT(r,0,0,256,128)
APPEARANCE WINDOW _mainWindow,"Doc",@r,_kDocumentWindowClass ,¬

kWindowStandardDocumentAttributes
DEF SETWINDOWBACKGROUND(¬

_kThemeActiveDialogBackgroundBrush ,_zTrue)

EDIT MENU 2

//Build field
SETRECT(r,0,0,WINDOW(_width)-16,WINDOW(_height))
INSETRECT(r,16,16)
EDIT FIELD _mainField,,@r,_Framed_noDrawFocus

r.left = r.right
r.right = r.left + 16
r.top --
r.bottom ++
SCROLL BUTTON -_mainField,,,,,@r,_scrollOther

FOR x = 1 to 200
EDIT$(_mainField,_maxInt,_maxInt) = STR$(x)

NEXT

//Event loop
DO

HANDLEEVENTS
UNTIL 0

92

EDIT FIELDS 

FUTUREBASIC  SWITCHING

//Build field
SETRECT(r,0,0,WINDOW(_width),WINDOW(_height))
INSETRECT(r,16,16)
t$ = "This is a test"
TEXT _sysFont,18
EDIT FIELD _mainField,t$,@r,_Framed_noDrawFocus,_leftJust

//Event loop
DO

HANDLEEVENTS
UNTIL 0

By modifying the edit field statement, we can produce
the same field as static, uneditable text using the following syntax.

EDIT FIELD _mainField,t$,@r,_statFramed,_leftJust

If we were building edit fields as labels or displaying any type of informational text in
the window, we would probably use a static field with no frame.

Let's take the previous listing and arrange edit fields in a
realistic manner. I will introduce a new method for defining and
using strings here. In BASIC, we have always used the dollar
sign ($) to indicate a text string. FutureBASIC has the ability
to define a string without the dollar sign suffix.

DIM promptString AS STR255

…is functionally eqivalent to…

DIM promptString$

85



SCROLLING TEXT 

FUTUREBASIC  SWITCHING

An active field with an attached, but disabled scroll bar

The same field with the scroll bar enabled after text entry

The trick for attaching a scroll bar to an edit field is a simple one. Build the field first.
Then create a scroll bar with the negative version of the edit field ID number. If your edit
field ID turned out to be 22, then the scroll button would have an ID of -22. If the field is
numbered _mainField, then the scroll bar is created with -_mainField.

Once the scroll bar is created, you do not need to refer to it using the negative value
again. For instance, to obtain the value of the scroll bar in this example (which also turns
out to be the number of the top line in the field) would require scrollValue =
BUTTON(_mainField).

repetitively adding pieces of text to a field

We often build fields by appending small pieces of text as they are read, calculated, or
concatenated. The EDIT$ statement is worth a trip to the Reference Manual since it
provides a variety of ways to accomplish this task. The next listing adds a list of numbers
from 1 to 200 by appending each to the end of the field's contents. Notice how, as the
digits are added, that the scroll bar activates, then the thumb becomes progressively
smaller to indicate the size of visible data in relation to the entire contents of the field.

91

EDIT FIELDS 
FUTUREBASIC  SWITCHING

In either case, you may use promptString without the suffix once it is dimensioned.
This is a blessing with a confusing side affect. If you dimension a string variable t$ and
later try to use an integer variable t (without a suffix) it is assumed to be a string.

The next listing will introduce other new items. Take a moment to read each line in
detail before proceeding to the comments that follow.

//Text

BEGIN ENUM 1
_firstNamePromptField
_firstNameEditField
_lastNamePromptField
_lastNameEditField

END ENUM

_mainWindow = 1
DIM r AS RECT
DIM promptString AS STR255
DIM err AS OSErr
DIM fldHt AS INT
DIM sWidth AS INT

//Build window
SETRECT(r,0,0,256,128)
APPEARANCE WINDOW _mainWindow,"Doc",@r,_kDocumentWindowClass ,¬

kWindowStandardDocumentAttributes
DEF SETWINDOWBACKGROUND( ¬

_kThemeActiveDialogBackgroundBrush ,_zTrue)

//Build field
LONG IF FN USETHEMEFONT(_kThemeSystemFont,_smSystemScript) = _noErr

fldHt = USR FONTHEIGHT + 6  // fld ht is font ht + 6 pixels
promptString= "First name:"
// width is string width + 16
sWidth = FN STRINGWIDTH(promptString) + 2

86



SCROLLING TEXT 

FUTUREBASIC  SWITCHING

my, what big text you have, grandma!

Not all fields contain tiny snippets of text that easily fit into a single line or even a single
window. Both static and editable fields are often scrollable. FutureBASIC handles this
transparently by allowing you to attach a scroll bar to the field.

The next listing will show a new field created with the potential for displaying a scroll
bar. If you type into the field, the scroll bar will magically activate when your entry is
sufficient to cause the field information to scroll.

//Scrolling Text Fields
_mainWindow = 1
_mainField  = 1
DIM r AS RECT
DIM x

//Build window
SETRECT(r,0,0,256,128)
APPEARANCE WINDOW _mainWindow,"Doc",@r,_kDocumentWindowClass ,¬

_kWindowStandardDocumentAttributes
DEF SETWINDOWBACKGROUND(¬

_kThemeActiveDialogBackgroundBrush ,_zTrue)
EDIT MENU 2

//Build field
SETRECT(r,0,0,WINDOW(_width)-16,WINDOW(_height))
INSETRECT(r,16,16)
EDIT FIELD _mainField,,@r,_Framed
r.left = r.right
r.right = r.left + 16
r.top --
r.bottom ++
SCROLL BUTTON -_mainField,,,,,@r,_scrollOther

//Event loop
DO

HANDLEEVENTS
UNTIL 0

90

EDIT FIELDS 

FUTUREBASIC  SWITCHING

SETRECT(r,8,8,sWidth+8,fldHt)
EDIT FIELD _firstNamePromptField,  promptString, @r, _statNoFramed

r.left = r.right + 8
r.right = WINDOW(_width) - 16
EDIT FIELD _firstNameEditField,  "", @r, _Framed

promptString= "Last name:"
SETRECT(r,8,fldHt + 16,sWidth+8,fldHt*2 + 8)
EDIT FIELD _lastNamePromptField,  promptString, @r, _statNoFramed

r.left = r.right + 8
r.right = WINDOW(_width) - 16
EDIT FIELD _lastNameEditField,  "", @r, _Framed

EDIT FIELD _firstNameEditField //activate fld 1
END IF

//Event loop
DO

HANDLEEVENTS
UNTIL 0

87



FONTS 

FUTUREBASIC  SWITCHING

Another aspect of this series of calculations involves the width of the editable text field.
The next listing uses the width of the window minus sixteen pixels. The good thing
about this is that it does not matter if you change the window width at a later date. Your
edit fields will automatically modify themselves so that they still look good.

which bunny is holding up her hand... uh paw?

When a field is built, it is flagged as the one to become active. (The active field is the one
that has that hilite border around it.) Because we build the field for the last name as our
final creation, it would have been the active field. This might have been confusing to the
user, so an additional command was added to make the "First name:" field active: EDIT
FIELD _firstNameEditField.

fonts across macdom

Font changes can add a lot to a desk top publishing document, but become a problem
when you are distributing software. The down side is that a font you select may not be
available on the end user's machine. Luckily, the Appearance Manager provides a
standard set of constants and a single toolbox call to remedy this. The toolbox and
available constants are:

err = FN USETHEMEFONT(_kThemeSystemFont,_smSystemScript)
_kThemeSystemFont
_kThemeSmallSystemFont
_kThemeSmallEmphasizedSystemFont
_kThemeViewsFont
/* The following ID's are only available with MacOS X or
CarbonLib 1.3 & later*/
_kThemeEmphasizedSystemFont
_kThemeApplicationFont
_kThemeLabelFont
_kThemeMenuTitleFont
_kThemeMenuItemFont
_kThemeMenuItemMarkFont
_kThemeMenuItemCmdKeyFont
_kThemeWindowTitleFont
_kThemePushButtonFont
_kThemeUtilityWindowTitleFont
_kThemeAlertHeaderFont

89

_kThemeCurrentPortFont

EDIT FIELDS 

FUTUREBASIC  SWITCHING

more on constants

There are a few good habits that have been introduced or reinforced here. Consider
incorporating them into your FutureBASIC programs. The first is the use of enumerated
constants to create edit field numbers.

BEGIN ENUM 1
_firstNamePromptField
_firstNameEditField
_lastNamePromptField
_lastNameEditField

END ENUM

Why do things this way? First, we know that we will not accidentally use the same
number for two different fields. Next, we have clear word base phrases that serve as
substitutes for numbers.

Did you notice that even the static fields have constants assigned? You might wonder
why you would have to change a static field; I mean, "First name:" means "First name:".
What could change there? Lots!

What if there were an option to change the language of the program from English to
Redneck? Then "First name:" would become "What your mamma calls you:". What if
you decided to reuse the same window for accepting different data? This happens a
lot when you are looking for "Sold to"/"Ship to" information. What if you wanted to
show the current prompt in bold text or change the color to indicate that a field had not
been properly completed? What if your sister took your daddy's false teeth and hid
them in the turkey stuffing on Thanksgiving day? OK, maybe that last one is not
important. But you would need to be able to change the text in the other static fields.

how big is that supposed to be?

I set the program up so that the size of the fields would be determined by the size of
the text. For instance, the height of the field was calculated by calling on USR
FONTHEIGHT. I added a six pixel pad so that there would be room for a frame and
border around the text in the editable field.

The width was determined for the prompt using FN STRINGWIDTH. An additional
pad was added there because you can't make a field that is the exact width of the text.
It won't fit. You must allow a one pixel border on each side of the text so that it will fit
inside of the edit field.

88


